

HOUR DELIVERY ON ALL ORDERS OF TEN GRYSTALS OR LESS

...well it will take someone with manufacturing "know how" to do it

But of more importance the crystal must be manufactured to Strict Specifications, have good activity and operate "on frequency" in the circuit for which it was ordered.
SENTRY can manufacture crystals for all two-way radio equipment: Commercial, Amateur, Aircraft, Military and Citizen Band. You need only to specify the model of set and channel frequency.
You don't believe it, when we say - "Buy the Best"?

You are satistied with your present supplier?
You are satisfied with high prices?
You are satisfied with "second best"?
Until you try SENTRY you will never know!
Try Us! Make Us Prove It! "Buy the Best"

SEND FOR OUR CATALOG OF PRECISION QUARTZ CRYSTALS AND ELECTRONICS FOR THE COMMUNICATIONS INDUSTRY. IT WILL COST YOU NOTHING!
\square

SENTRY MANUFACTURING COMPANY Crystal Park, Chickasha, Oklahoma 73018

JANUARY 1969

FM on 10 . 5
IC Repeater Identifier 15

Telephone Command of Repeater Operations . . 23

Converting the 450 MHz
Prog Line Telephone Mobile 25

Quickie Tone Generator 27

FM Repeater Directory 30

IC Applications . 37

Repeater Rules Plea 41

IT STARTED IN CHOCAGA! 47

REGULAR FEATURES
FM Reviews . 35
LETTERS . 52

CLASSIFIED ADVERTISING 59
Cover Photo: Lunar Orbiter looks at Earth from that Great Repeater Site in the Sky. Future generations of amateurs and two-way pros will be able to provide almost hemispherical repeater coverage from sites atop peaks on the lunar. surface. Earth-based servicemen will have to plan on high reliability, though; a bad integrated circuit or transistor will mean a great deal more than "a quick trip to the site'".

All Contents are Copyrighted 1968 by VDB Publishing Company

Subscription Price - $\$ 5.00$ per year
San Dimas (8), Callfornia 91773
(714) 599-2010 $\$ 9.00$. two years

PAGE 4 IS MISSING

 FROM SOURCE
PAGE 5 IS MISSING

 FROM SOURCE

Block Diagram of the Transmitter Types ET-5-A, ET-5-C, ET-6-A, ET-6-C, and ET-7-A (RC-73) Figure 1

TRANSMITTER

The transmitter I am using is the $4 E T 6 A 5$ which will tune $30-40 \mathrm{MHz}$. (See Fig. 1.) It was really not necessary to make any changes operating so close to $30 \mathrm{MHz}(29.6)$, but I decided to modify the unit slightly to allow the tuned circuits in the transmitter to function at maximum Q and gain. This means good rejection of any unwanted harmonics getting to the tank circuits.

Table 1 and the schematic of Fig. 2 illustrate the capacitor changes to allow
retuning the transmitter to a lower frequency in my case. Just paralleling capacitors and minor tuning was all that was necessary to change frequency of operation. With a multiplier of 12 from oscillator to output (or FX $=\mathrm{FC} / 12$), a crystal frequency of 2466.666 kHz (HC-17/U) was required for 29.6 MHz operation. The filaments require 3.5 amps at 6 V and another 1.5 amps to activate the antenna relay. High voltage required was from 500 to 750 volts (250 mA).

TABLE 1

PAGE 7 IS MISSING

 FROM SOURCE
PAGE 8 IS MISSING

 FROM SOURCE
PAGE 9 IS MISSING

 FROM SOURCE
PAGE 10 IS MISSING

FROM SOURCE

JANUARY, 1969
is required, unless you are making drastic frequency change (such as 10 MHz or so). Table 2 and the schematic of Fig. 4 show component changes for large frequency conversions. A 23.6
retuning the oscillator and rf stages. The procedure for making these adjustments is given below. If the receiver needs to be completely retuned, use the procedure outlined

Before applying power to the transmitter, use a grid dip meter to tune the first, second, and third multipliers to maximum dip on the multiplier frequencies. If you don't have a grid dipmeter, you can tune up with a meter inserted in the test jacks. Although the latter is done anyway, the grid-dip tuneup could be eliminated, but that is not recom-
5. Insert the 1.0 mA dc meter in third multiplier grid jack $J 102$ (green jack adjacent to the 6AQ5) and tune the second multiplier plate coils as in step 4 above. The maximum grid current will be between 0.2 and 0.6 mA .
6. Connect the 15 mA dc meter between power amplifier grid jack J103 (oreen iack on front nanel) and the

TABLE 2

Model No.	4ER6A4 \& 6C4		4ER6A5 \& 6C5		4ER6A6 \& 6C6	
	C361	1.0	C375	1.0	C376	1.0
Component Symbol Numbers	C362	1.2	C377	1.0	C378	1.0
	C364	39	C379	18	C380	27
	C365	43	C381	18	C382	22
	C366	36	C383	7	C384	39
	C367	33	C385	22	C386	51
	C368	43	C387	15	C388	47
	C372	68	C373	33	C374	18
	L301		L302		L303	
	T301		T321		T331	
	T302		T322		T332	
	Y 301		Y 302		Y 303	
	R393	22K	R384	33K		
	R394	33K	R385	33K		
	R395	22K	R392	33K		
	C307		C307		C434	
	C308	4.7-45	C308	4.7-45	C435	4.7-53
	C309		C309		C436	

Equipment needed:

1. A nonmetallic screwdriver.
2. Two meters ($0-50$ and $0-250 \mathrm{micro}-$ amperes).
3. A crystal of the proper frequency for the high frequency oscillator.
4. Signal generator (25-50 MHz ranges).

To change frequency or align the $r f$ and antenna stages:

1. Turnthe receiver on and allow itto warm up for two or three minutes.
2. Insert the new crystal in the high frequency oscillator crystal socket.
3. Insert the $\mathbf{0 - 5 0}$ microammeter in oscillator grid jack J302.
4. Tune oscillator plate tank coil L301, L302, or L303 for maximum oscillator grid current.
5. Note the reading and turn the iron core counterclockwise until meter reads 50 percent of the maximum grid current (approximately onehalf turn).
6. Insert a $\mathbf{0 - 2 5 0} \mu \mathrm{A}$ meter in firstlimiter grid jack J303.
7. Apply an unmodulated signal to pin 1 XV301, the first rigrid, through a $0.01 \mu F$ capacitor.
8. Peak transformer T302, T322, or T332, the first rf plate transformer, for maximum first-limiter grid current. Start at the bottom trimmer and work toward the top.
9. With the receiver connected to the proper antenna, transmit on the operating frequency a weak, unmodulated signal from the signal generator. Keep the signal level low enough so that the limiters will not saturate.
10. Peak transformer T301, T321, or T331, the antenna transformer for maximum first-limiter grid current.

GENERAL DATA

I have noted many FM surplus centers around the country are selling these GE rigs with control heads and cables for around $\$ 50$. I would recommend that if you are going to purchase any units, specify the model which would suit your frequency of operation and, of course, a 6 or 12 V unit for mobile or fixed. Fig-
ures 5 and 6 show outline diagrams for various transmitter and receiver types.

I have in operation two units, one mobile and one fixed. The mobile transmitter unit derives its high voltage from a dynamotor supply. To increase the transmitter efficiency, I built a transistorized converter to give the necessary high voltage upon replacing the dynamotor. Keep an eye on the surplus market for converter transformers. In the interest of completeness, Fig, ? shows the mobile interconnection data. For the fixed installation, television transformers do very nicely to supply the high voltage required and with the dynamotor and dynamotor relay removed from the chassis, there is ample room for these components. Fixed installations require no control head. Removing the power connectors and adding small aluminum plates to the end of the chassis, you can mount the microphone socket and power switch for the transmitter, squelch, and volume in the receiver. In the receiver chassis, there is sufficient room for a speaker if a power transformer is placed close to 6AQ5. Cut a hole in the side of the cover and mount the speaker grill.

Well, with the conversion complete, plug in an old CB ground plane (shortened, of course). We'll be looking for you on 29.6 MHz !

INTEGRATED CIRCUIT Repeater Identifier

by Tom Woore - pomona. calif

There is no economically adequate way of identifying a repeater automatically. The FCC rules require that an amateur repeater be identified every three minutes that the system is in use. Though some systems disregard the rule, others are identified via voice by each person using the repeater. The more sophisticated systems identify automatically by employing mechanical code wheels or relays, both of which have a high mortality rate. The question comes to mind, why not a better mousetrap? Or in this case, why not a solid state or more state - of - the -art integrated circuit identification unit!!

With no moving parts and a parts cost of about $\$ 18$, this digital identification unit can be built to outlast anything you put on top of a mountain.

The digital identification unit (DIU) is unique in that it uses a simplified compouter address principle for selecting the information it is programmed to send. There are three basic units in the DIU: counter, matrix (memory), and signal logic. The counter establishes which sequence is next. The matrix determines what instruction is next by the sequence. The signal logic converts the instruction information into the actull signal to be sent. The whole system is based on a closed loop and therefore no standard clock is employed in the logic.

To understand how the DIU works we must first become familiar with some of the simple logic units that the system is based on.

High:

Low:

Inverter:
Device used to produce opposite logic state of what is fed into it. Example: +2 volts input into an inverter would produce a zero output while a zero input would produce a +2 volt output.

Symbol: - $-\infty$ or $-\infty$

OR gate: Device used to give an output for any of the signals fed into the input. Example: 3 inputs, one at +2 volts, the other two at zero, would give a +2 volt output.

Symbol:

AND gate: Device used to give an output for all input lines being high. Example: +2 volts on all 3 inputs of gate produces +2 volts on the output.

Symbol:

NOR gate: An inverted OR gate; device to give a zero output when any of its inputs are high. Example: 3 inputs, one at +2 volts, the other two at zero, would give a zero output.

Symbol:

PARTS LIST

R1, R7
R2, R3, R4, R5, R6, and R9
R8
C1, C3, C4, C5, and C7
C2, C8
C6
Diodes (including matrix diodes), 20 to 100
$1,2,3,4,5$ (within symbols above)
6, 7, 8 (within symbols above)
Transistors
3. 3K

10K
6.6 K
.05 uF
10 uF
30 uF
HEP 570 (Motorola)
HEP 572 (Motorola)
2N3415 (GE)

All resistors: one-quarter watt or greater capabillity. All capacitors: 6 volts or greater, working capability.
Numbers outside symbols refer to pin contacts on IC's. Grounds not shown. Ground contacts are as follows:

IC NUMBER
1
2
3
4
5

GROUND PINS
12,
12, 10,
2, 9
13, 6
10, 13, 2

FIG. 1 SYSTEM SCHEMATIC DIAGRAM, DIGITAL INTEGRATED CIRCUIT REPEATER IDENTIFICATION UNIT.

NAND gate: An inverted AND gate device used to give a zero outputwhen all of its inputs are high. Example: 3 inputs all at +2 volts produces an output of zero volts.

Symbol:

For this article, NOR gate logic was used for NAND functions; therefore, the definition for our purpose of a NAND gate is a device used to give a high output when all of its inputs are zero. Example: 3 inputs at zero produces +2 volts output.

Symbol:

Note that the zero placed before or after the inverter, NOR, and NAND logic units defines the expected state of the input or output.

Unit: Smallest bit of information sent by the digital identification unit, dit, dah, and blank.

The digital identification unit uses the MC 700 series integrated circuits due to their inexpensiveness and availability. The new Motorola HEP line of integrated circuits can also be used.

DIGITAL IDENTIFIER UNIT

A 0 volt signal through the start network from the transmitter keying circuit resets all the flip-flops in the cónnter to the zero state. All \bar{Q} lines become positive. The positive signals, approximately 2 volts, are fed into the diode matrix which decodes the counter number into an instruction for the oscillator keying logic. In the digital identification unit there are four basic instructions: (1) send a dit, (2) send a dah, (3) send neither dit nor dah (blank), and (4) stop

If the diode matrix decodes the first sequence count (0) to be instruction no. 1 (send dit), the dit signal line from the matrix will be high. This will cause
the dit inverter to have a low output and one-half of the dit enable NAND gate would be enabled. Since the space line is also at zero level at this time, a trigger pulse would be sent through capacitor $C 7$ to the dit one-shot. (A one-shot is a monostable device used to generate a predetermined pulse width.) The dit time pulse determined by the one-shot is sent through the dit/dah NOR gate and inverter to key the tone oscillator circuit.

At the same time the dit is being sent by the one-shot to the oscillator, the space one-shot logic is being reset ("dit, dah, or blank," NOR gate, "dit, dah, or blank," inverter, and "space enable" gate).

Upon completion of the dit signal, the "dit, dah, or blank" NOR gate output becomes high making "dit, dah, blank" inverter output low. Since the stop instruction has not been called for by the matrix, the space enable NAND gate produces a high output. The high output from the space enable NAND gate sends a pulse through capacitor C3 to trigger the space one-shot. (The space time period is used to separate the units of a letter. Example: $D=$ dah space dit space dit.)

The space period is the same as the period for a dit. The space signal, besides allowing for the time to distinguish the units of a letter, advances the counter to the next unit and resets the dit and dah one-shots by discharging capacitors C5 and C7.

If the diode matrix decodes the next sequence to be instruction no. 2 (send dah), the dah signal line from the matrix will be high and the dit signal line will be low. When the space line becomes low, the dah/blank enable NAND gate will send a pulse through capacitor C5 triggering the dah/blank one-shot. The dah time pulse would then go through the dah/blank inverter and be challenged by "verify dah" NAND gate to see if the pulse was for a dah. An affirmative check would come from the dah inverter with a zero level output. The dah signal would then be sent through the dit/
dah NOR gate, inverted, and sent to the oscillator keying circuit. The space one-shot is then triggered to advance the counter to the next unit.

If the diode matrix decodes the next sequence to be instruction no. 3 (send a blank), neither the dah nor dit line will be positive. The same will occur again as if a dahwere being sent, except that when the signal reaches the "verify dah" gate, it will be stopped from keying the oscillator. This generates the blank period which is put between letters. (DE $=$ dah space dit space dit blank dit blank.) Again the loop through the space one-shot is triggered and the counter is advanced to the next unit of information.

The counteris advanced each time a unit of information is sent untilitis advanced to the "stop" instruction. This instruction causes a blank to be automatically sent and stops the space enable NAND gate from triggering the space one-shot. The digital identification unit remains in the stop state until a reset pulse is sent to the counter from the transmitter keying circuit again.

The R1, C4 network is used to slow down the fall of the space line so that the counter is allowed to advance before the sending logic is ready to send the next unit of information. Transistor T2 is used to key the transmitter keying circuit while the digital identification unit is sending its identification code.

DIODE MATRIX

Up until now very little has been said about the diode matrix other than the fact that it determines what instruction to give the keying logic. The actual construction of the matrix can be made considerably cheaper by simplifying the diode logic. Up to 70 percent of the diodes necessary for the diode matrix can be eliminated by using mathematics. A much more sophisticated, economical, and space-saving layout can be achieved using Boolean Algebra. The matrix in this DIU employs the simplifying techniques of Boolean Algebra.

Thanks to Mr. Karnaugh, it is not necessary to give a complete discussion on Boorean Algebra. The Karnaugh map, which is shown below, is a device for mechanically determining the mathematical equivalent of the diode matrix. For the purposes of this discussion the MCW message for the DIU will be "DE W6FNO." Of course, any other message can be developed by this method and consequently this discussion may be used for developing any matrix logic for controlling a system.

The first step in determining the diode matrix for the message is to break up the message into the units to be sent (. = dit, $=$ = dah, $x=b l a n k$). This is shown in the breakdown diagram of Fig. 2.

FIG. 2

IDENTIFICATION UNIT BREAKDOWN

It is seen that 30 units of message will be sent (0 is actually used for a blank). To convert units 0 to 29 into information as to how many diodes will be used, the Karnaugh map is needed.

The numbers in the box (Fig. 3) correspond to the decimal number equivalent to units on the output of the counter. The numbers across the top and along the side of the chart correspond to the binary output of the flip-flops - 1 for true or 0 for false. The letters written diagonally refer to the five flip-flops. Example: Box 17 has flip-flop A true, B false, C false, D false, and E true. Written in Boolean form, 17 would be represented by $A \bar{B} \bar{C} \bar{D} E$, where the bar over the letter means that the flip-flop is false and, conversely, a letter without a bar (CBA) represents a flip-flop that is true.

To simplify the matrix, a Karnaugh map is constructed for both the dits and dahs to be sent. From Fig. 2; 2, 3, 5, 8, $13,14,15,16,18,19,21$, and 24 represent the dits to be sentin the message. In the dit Karnaugh map (Fig. 3) a "l" is placed in each box corresponding to
the number. An X (not the x which represents a blank) is placed in all boxes after the stop code number. These are "don't care" conditions because the counter will not count to these codes.

$\mathrm{C}_{\mathrm{B}_{\text {A }} 000}$	001	011	010	110	111	101	10
EOT	117	[1]	${ }^{1} \mathrm{~S}$	-		$\left\|\begin{array}{rr\|}\hline 1 \\ 5 \\ 5\end{array}\right\|$	
	1	11	10	1	'	${ }_{13}$]
$\begin{array}{r} 1 \\ \hdashline 2 \\ \hline 2 \\ \hline \end{array}$		$\frac{1}{27}$	$\begin{array}{\|c\|} \hline 16 \\ 24 \end{array}$	x_{30}	\mid	29	
110	17		$1,7,12$	22	11	3	1

FIG. 3 KARNAUGH MAP (DIT $=\cdots$ DAH $=-1$

From the dit Karnaugh map it can be seen that the third unit of information is a dit and that the flip-flop A is true, B is true, C is false, D is false, and E is false (or $A B \bar{C} \overline{D E}$). To put this in matrix form, the Boolean Algebra tells us that this dit would be represented by a diode connected to Q_{A} lead (the true lead of flip-flop A), another to Q_{B}, another to \bar{Q}_{C} (the false lead of flip-flop C), another to Q_{D}, another to Ω_{E}. It would take five diodes normally for sending this information (Fig. 4).

FIG. 4 UNIT 3 INFORMATION DIT

It would normally take five diodes for each unit of information in the message or $29 \times 5=145$ diodes. This does not count the diodes needed to $O R$ the dahs together and dits together, which requires an additional 21 diodes. A total of 166 diodes would be used. This is where the Karnaugh map saves diodes. On the map (Fig. 3) any adjacent box or any box that changes just one variable from another box eliminates that variable. Boxes 8 and 24 simplify to $\bar{A} \bar{B} \bar{C} D$, eliminating the E flid-flop altogether.

Boxes 3, 2, 19, 18 also simplify since they change one variable at a time (or $B \bar{C} \bar{D}$). Note that not only is 3 (Fig. 3) represented by $B \bar{C} \bar{D}$, but 2,19 , and 18 , resulting in a savings of $20-3=17$ diodes. 14, 15 combine with "don't cares" 30,31 to equal $B C D$. The final expression for the dits is $B C D+B C D$ $+A B D C+A B C E+A B C E+A B C D$. A total of $22+6$ (number of OR groups) $=28$ diodes are used to express all the dits in the message. A total of 61 diodes makes up the complete matrix including dits, dahs, and stop codes. Quite a few less than 166!

The final matrix appears in Fig. 5 for the message DE W6FNO. Note that any matrix of this magnitude can be determined by the above method. Figure 5b shows wiring for the counter. Note that Fig. 5 b mates to the leads of Fig. 5a.

CONSTRUCTION

The layout used for the identifier was adopted so that the unit could be mounted to the side of the transmitter cabinet of the repeater on standoffs. However, any physical configuration can be used to develop the layout. The printed circuit board, seen in this article, is available from

If sockets are not used for the ICs, care should be taken so that they are not overheated. A small "pencil" iron will do nicely for soldering the ICs rapidly to the PC bioard.

All parts are readily available from most electronic parts houses. The ICs and the 3.9 V zener used in the project were obtained from Hamilton Electrosales. The power supply (Fig. 6) was designed to be shortproof and limits current to a maximum of 1 amp at 3.6 volts.

INSTALLATION

The signals normally received and sent to and from the DIU should meet the following criteria

1. From power supply - 3.6 volts dc, well filtered and regulated

FIG. 5 "DE W6FNO" BOARD \& UNIVERSAL COUNTER

2. From transmitter keying circuit 0 volt transmitter keyed; approximately 6 volts transmitter not keyed
3. To oscillator keying circuit - tone off: 10 megohms (nominal); tone: 10 ohms
4. To transmitter keying circuit-identifier off: 10 megohms (nominal); identifier on: 10 ohms

Note that all lines should be filtered dc. In some relay circuits the output of a bridge rectifier is used to directly key the transmitter. In order that the pulsating dc does not key the digital identification unit, a $60 \mu \vec{F}$ capacitor or greater should be put across the relay supply. While installing the W6FNO DIU, it was discovered that the grounded 6.3 volt filament supply in the transmitter could not be used to power the DIU. The reason this arrangement could not be used was because the output of the rec-
tifier in the DIU was grounded. If any of the signal lines do not meet the criteria set above, simple diode, resistor, and capacitor circuits can be used to condition the signal.

When the final installation of the DIU was completed for W6FNO, the transmitter keying circuit from the DIU was disconnected; this was due to the fact that the DIU only takes 2 seconds (42 wpm) to identify the station. If the carrier keying the repeater dropped out while the DIU was identifying, the completion of the MCW would be lost in the squelch tail of the receiver.

Obviously, the PC board for the W6FNO matrix could not be used for other systems. The DIU, however, is applicable to all identification systems. Actual size patterns for the board (two sides) are provided in Fig. 7 (a and b).

SUPPLY PARTS

RESISTORS:

R1,4 1 ohm, half watt 2
Re 8 ohm, 2 watt 1
R3 1 K ohm, half watt 1
R2 220 ohm, half watt 1
R5 100 ohm, half watt 1
CAPACITOR:
$200 \mu \mathrm{~F}, 15$ volts 2
SEMICONDUCTORS:
HEP 245 (or 2N4921) Transistor 1
HEP 175 Bridge Rectifier 1
1 N5228 Zener, .3.9V, 0.5W 1

FIG. 7 CIRCUIT BOARD LAYOUT (2 SIDES)

TELEPHONE

REPEATER

OPERATIONS

How to
use the repeater site's
landline for
back-up control

A not-too-often considered means of remote control is the telephone itself (assuming a telephone is available at the remote site). As a principal control element, the telephone has certain disadvantages, but as a backup system the telephone has no equal. There is no feeling quite as comfortable to a remote or repeater owner as the knowledge that he can shut down his system regardless of what happens to the hilltop transmitter or receiver and regardless of where he is. For he knows that to accomplish shutdown, he need only go to the nearest telephone and dial the remote number. When the remotely situated telephone rings, the shutdown function will occur.

The circuit of Fig. 1 shows how the telephone ringing voltage can be used to trigger a selected function without causing interference to the phone line. The ac ringing voltage is isolated from the phone lines through C_{1} and C_{2} and rectified to produce a dc signal which triggers the currentoperated relay. Omission of C_{1} and C_{2} would cause excessive loading of the phone line and would result in hum, level problems and dc entry. The filter capacitor must be low enough in value to allow full charging during a one-second ring so that enough power is available to pull in the relay.

FIG. 1 SAFETY "OFF" SYSTEM.

It is easy to see the difficulties that could arise if the telephone number were commonly known, since any ring would cause immediate interruption of repeater service. This problem can be avoided by adding the extra circuitry required so that the system will shut down only when the phone rings a specific number of times. This circuit is shown in Fig. 2.

In the case shown, the desired function occurs when the phone has rung exactly twice. The first ring
prevents the stepper from reaching the right point. If a third ring occurs, the function is canceled. The function occurs only when the phone has rung two times and the stepper rests on position 2. Ringing of the phone energizes the timer and moves the stepper. The stepper will automatically reset after it has been energized. The period of the timer should be selected to allow sufficient time for the stepper wiper to come to rest on the "off" contact with a few seconds to spare.

Off-normal contacts make when stepper is energized, break after reset is completed. Some steppers do not have this capability, but it can be simulated on multideck steppers by bussing the contacts of a deck together and using that deck's wiper as a switch contact.

FIG. 2 CODED "OFF"PULSING SCHEME

Converting the 450 MHz PROG LINE Telephone Mobile

by CLColtin GLENDORA. CALIF

Because of the recent FCC land mobile Rule changes for commercial users, there should be an abundance of 450 MHz Progress Line mobile units being removed from service. A great many will be special mobile units set up for telephone service. Since these are equipped with Secode selectors, they are not usable "as is" on amateur systems.

But with a little time and a few simple conversions, the Progress Line telephone mobile can be made into a fine amateur unit.

The first thing to do will be to unplug and remove the Secode selector. This is held to the frame by four bolts. Next unplug and remove the transmitter strip. This will give access to the front plug and the T-power side plate.

Very carefully, cut the wires to the cord from which you unplugged the selector (from the plug on the front plate). Three of these wires lead out of the T-power unit. Save as much of these three leads as you can so you can attach them up to the front plug. The shield wire goes to pin 19 on the plug, the red wire to pin 20 , and the black wire to pin 21.

There is a fourth orange wire feeding from the T-power to the selector cable. This is a B-plus wire. Cut and tape it.

Next, remove the side cover from the T -power strip. This is done by removing the three cross-recessed retaining screws from the top. The cover will then slide up and out.

NOTE
On top of the unit there is a control pot with a large washer. Remove this pot and all the connecting parts that go to the terminal board.

Disconnect the audio cables from the pot and wire cables together. (The wires are color-coded, so this should be no problem.)

If you wish, you can install a standard GE chassis mike connector in the hole from which you removed the pot and wire the cables to this for easy operation directly from your unit. The unit is now ready for tuneup and operation.

Sometimes these units will experience, a T-power whine. If this should, occur, turn the unit over. Note under the transmitter there is a ceramic trimmer in the osc. circuit. Pad the trimmer with a 10 to 15 pF NPO capacitor until you can get a reading on the multiplier 1 test jack of less than 0.5 volt. This will, in many cases, eliminate most of this problem.

ICE- 12 METER FM TRANSCEIVERS

FULLY SOLID STATE - NOTUBES

- Operates on 117 VAC - 12 VDC - or optional internal NI-CAD battery
- Self-contained $3^{\prime \prime}$ X 5" speaker
- Military type fiberglass printed circuit boards
- Transmitter power output 4 watts minimum
- Regulated power supply - cannot be damaged by reverse polarity
- May be ordered for either wide or narrow band operation at no extra charge (wide band supplied unless specified)
- Small size: 8 "w X 31/2"h X 91/2"d
- Light weight - Less than $41 / 2$ lbs.
- Built in 117 VAC power supply
- Simply plug in proper power cable to charge from 117 VAC to 12 VDC operation
- Transmitter and receiver channels individually switchable
- 3 channels transmit - 3 channels receive

1) Push-to-talk operation

INTERNATIONAL COMNUNICATIONS AND ELECTRONICS, INC. IGI7 NW MILITARY HIGHWAY/SAN ANTONID, TEXAS 7ERI3/5IE 34I-ISII

Circle Number 14 on Reader Service Card

Quickie
 TONE GENERATOR

...for whistle-on use

In many ways, the W6FNO repeater at Radio Ranch could serve as a model installation. The repeater stands ready for use 24 hours a day and is never shut down where it cannot be accessed by a station on the input frequency $(146.82 \mathrm{MHz})$. On the other hand, the repeater will shut itself off if a three-minute period elapses with no signals on the input. Sounds a little contradictory, but it isn't -- not really. The W6FNO repeater was an experiment to test the concept of subcontrol, i.e., limited control of the repeater from the actual frequency of operation.

The FCC sanctions use of semicontrol techniques such as continuous-tone squelch and single-tone in applications requiring limited access to a remote or repeater. The W6FNO repeater crew took the idea one step further, and the result is a repeater that is fully compatible with on-channel nonrepeater operation, and one which does not pointlessly add to the congestion of a crowded band.

The repeater is equipped with two timers. The first timer is a transmission-limiting device: when the input carrier exceeds three minutes duration, B-plus is removed from the transmitter final; and it can only be reapplied after the input carrier drops out momentarily. The second timer removes the transmitter B-plus also. But in this case, it is activated from absence of an input signal for three minutes. Since the shutdown is only B-plus removal, the
repeater stands ready to be activated immediately upon application of the proper signal, which in this case is nothing more than a shrill whistle.

The active FM channel in the W6FNO area is the input frequency, 146.82 MHz . The repeater output frequency is not used at all except to monitor the repeater output. When two stations

FIG. 1 AUTOMATIC "WHISTLER"
are conversing on the FM channel, the repeater is not even part of the operation unless one of the operators wants it to be (as for instance, when the copy gets rough).

When a user wants to monitor the active 146.82 channel, but he is too far away from the area of activity to hear the stations, he merely puts a carrier on 146.82 and whistles into the microphone. Instantly the repeater comes on, regardless of the

FIG. 2 INTERCONNECTION

time of day or night, and the user finds himself right in the middle of the action. The only difference is that he hears his . 82 on 146.70.

The decoder at the repeater site that provides the turn-on function is nothing more than a simple frequency-to-dc converter such as the semiconductor decoder shown in the July issue of FM Magazine (page 14). This device is set to respond to as broad a range of frequencies as possible without being energized from voice tripping.

Even though the W6FNO decoder was set to respond to a wide frequency range, a few users found it difficult to key the repeater on. Perhaps their audio was not quite what it should be to reproduce the required tone $(1750 \mathrm{~Hz})$, or perhaps they were simply not proficient at whistling. At any rate, one of the users (John, W6ZCL) hit upon the idea of installing a simple automatic whistler in each of his transmitters.

The circuit he designed was too uncomplicated to be considered an encoder; it consists of nothing more than a single-transistor oscillator using a twin-T feedback network. As can be seen from the circuit of Fig. 1, the design is the absolute epitome of simplicity -- and it works every time.

John didn't connect the whistler so that it would go on with each transmission; not only would this have defeated the purpose of the automatic-off function, but it would have given him the unpleasant characteristic of a squeal at the outset of each transmission. Instead, he connected the device into his unit so that it is energized by pressing a momentarycontact switch on the control head. Figure 2 shows how the oscillator is used with John's Motorola unit.

The automatic shutdown feature of the W6FNO repeater has done a great deal to enhance the relationship between the repeater users and the nonrepeater users in its locale. That segment of amateurdom that is against repeaters because they are used without necessity on many occasions can be satisfied that the repeater "responsibles" are doing their part to minimize the likelihood of unnecessary operation and use, but to provide an unmatched communications capability when it is needed.

IF THERE ARE ANY CLOSED OR RESTRICTED-ACCESS REPEATERS LISTED IN THIS DIRECTORY, PLEASE NOTIFY FM MAGAZINE IMMEDIATELY. THIS DIRECTORY IS ISSUED AS A COMPLETE LISTING OF ONLY OPEN REPEATERS.

Following the publication of the quarterly repeater directory, our incoming mail is dominated by "corrections," usually from individuals who have noted particular omissions from the listings. Most of the omissions, however, are intentional, because the repeater in question almost invariably belongs to a select group of users who restrict its use by CTS or other "semiprivate" signaling schemes. The directory is issued for the benefit of ALL FM operators, and does NOT include repeaters with a "secret" input or systems requiring special access codes. The only exception to this is the whistle-on repeater, and this exception is only made when all $F M^{\prime}$ ers are invited to access the repeater at their discretion.

So, if you notice a conspicuous omission from the directory, please be sure the unlisted repeater is free of attached strings before making a request to include that repeater in the official directory. THE REPEATER MUST BE ACTUATED ON A PURELY CARRIER-OPERATED BASIS TO QUALIFY AS AN OPEN SYSTEM.

Address all correspondence concerning repeaters to FM Repeater Directory, One Radio Ranch, San Dimas (8), California 91773.

A GREGORY EXTRA FOR FM READERS!

 We are offering free, with any purchase of our low, money saving specials as advertised on these pages, a free copy of the Motorola or G-E F.M. Schematic Digest. . .a $\$ 4.50$ value. . . While they last! Mention our special.. . While they last! Schematic include your free Scher when ordering and we will copy per order. Shematic Digest. Only one free6 METERS F. M.
MOTOROLA X-51GGS SPECIALS VERY CLEAN!
3 frequency dual front end receiver
2 frequency transmitter
Receiver has a transistorized power supply Transmitter uses a dynamotor.
12 volts 50 watts wide band
in $15^{\prime \prime}$ cases
Units complete with cables, multi-freq. control head, speaker, microphone, control relay and fuse block
$\$ 128$.

Ideal For Ham User!

New! FM 100-Watt

Mobile Linear Amplifier

High Band - 146-174 MHz
RF output 90-120 watts into 50 ohms.

Gonset Comtron Series - Model 972-A

In factory-sealed cartons. $\$ 150$.

Installation Kit, if needed, Model 3459. . . \$25.

G-E Schematic Outline and Interconnection DIAGRAMS for G-E 2-way

FM RADIOS

$$
\text { VOL. } 1
$$

Pre-Progress Line
(1949-55)
$25-50 \mathrm{MHz}$
$72-76 \mathrm{MHz}$
VOL. 2
Pre-Progress Line (1949-55)
$150-174 \mathrm{MHz}$ 405-425 MHz
450-470 MHz $\$ 4.50$ _ _ each volume _ _ General Electric 4ES14A
$6 / 12 \mathrm{~V} \cdot 450-470 \mathrm{MC}$ 12-15 Watts
less accessories $\$ 38$ in lots of $\mathbf{1 0}$ $\$ 30$

GREGORY ELECTRONICS CORP

249 Rt. 46, Saddle Brook, N. J. 07662 Phone (201) 4 89-9000

* GREGORY:

ELECTRONICS ron

249 Route 46

Heredle Brook, N.J. 07662 Phone (201) 489-9000

Send For New ${ }^{1} 69$ Catalog

Quality-Certified Values
G. E. Progress Line 4EZ11A10
10 watt transistorized power speakers
$\$ 15$.
G. E. $150-170 \mathrm{MHz}$ 6 or 12 Volt 4ES12A
10 Watt complete with accessories..... $\$ 38$.
In lots of $10 . . .$.

RCA CMV4E -148-172MHz 12 v 30W dynamotor power supply.
TX narrow banded, complete with accessories. . . \$54.

$84 \square 2 a$

Here is a spectacular opportunity on a first-come, first-served basis - only as long as our supply lasts.

WITH THE PURCHASE OF 1 UNIT AT REGULAR SAVINGS PRICE IN THIS COLUMN, YOU MAY HAVE A SECOND UNIT FOR ONLY $\$ 1$. (less accessories)

Bendix MRTLO $\mathbf{3 0 - 5 0 M H z}$ 35 w . 12 v . vibra. power supply, complete with accessories $\$ 38$.

BENDIX IV14AA $-6 / 12 \mathrm{~V} .30-50 \mathrm{MHz}$ vibrator P. S. $\$ 58$. 25 w . complete accessories

IVI6AA $=6 / 12 \mathrm{v} 30-50 \mathrm{MHz}$ vibrator P . S. 50 w. complete accessories $\$ 78$. less accessories deduct $\$ 20.00$.

RCA-CMU15A, $6 / 12 v 450-470 \mathrm{MHz}$ complete with accessories. $\$ 88$.

4ET5-G. E. 6v, 30w. $40-50 \mathrm{MHz}$ trans. $\$ 8$. 4ET5-G. E. l2v, 60w. $40-50 \mathrm{MHz}$ trans. $\$ 12$.

4ET6-G. E. 6v, 60w. $40-50 \mathrm{MHz}$ trans. . $\$ 12$. 4ET6-G. E. 12v, 30w. 40 - 50 MHz trans.. $\$ 15$.

MOTOROLA $450-470 \mathrm{MHz}$ comp. with access. T44A; 6 or 12 v. $\$ 48$. T44A6 - 6/12 v. $\$ 58$. T44A6A=6/12 v. $\$ 78$.
G. E. 4ESI4A1-450-470MHz, 6/12v. less access. 12 to 15 w. $\$ 38$.

450 MHz PORTABLES RADIO SPECIALTIES RSTR4N transistorized.................... $\$ 38$.
 with this superbly engineered deluxe transceiver. . . Look at these specifications GENERAL
Frequency range -144 to $147 \mathrm{MHz} ; 12$ to 14.5 VDC operation; solid-state devices -32 silicon transistors, 10 diodes; microphone, battery pack whip antenna, and three sets of crystats of your choice included. Tough modular construction. Three repeaters, transmit and receive, selectable from front panel.

FM Reviews

 the FDFM-2 FM transceiverFM is rapidly becoming a very popular amateur mode, so it is not surprising that the ever-vigilant Japan electronic industry is beginning to see the potentialmarketin this area. The past year has seen the advent of several new lines of VHF FM amateur equipment from the Japanese giants.

One such item is the FDFM-2, a compact but complete transmitter and receiver for two-meter operation. (A six-meter modelis also available now.) The FDFM-2 is not to be confused with the ICE transceiver being marketed by International Communications and Electronics, of San Antonio, Texas. The FDFM-2 is a product of Inoue Communications Equipment Corporation, and is distributed by Varitronics, Inc., of Phoenix, Arizona.

Distributors of both FM units were invited to submit models for evaluation and review (and comparison) by $\mathrm{FM}^{\prime} \mathrm{s}$ technical staff, but only one of the two actually provided such a unit: Varitronics, Incorporated.

In general, the FDFM-2 comes in two power ranges, one watt and five watts. The unit evaluated herein is the one-watt model. Specifications are as follows:

Freq: $\quad 144-147 \mathrm{MHz}$
Pwr Input: $\quad 12-14.5$ volts dc
Semiconductors:
32 silicon transistors 10 diodes
Equipment includes:
Microphone
Whip antenna (collaps.) Carrying case
One set of crystals on freq. of your choice.

The receiver has two rf sections, 3 i-f sections. It is of dual-conversion design, and boasts a sensitivity of less than 1 uV for 20 dB of quieting. It is equipped with standard squelch and has an audio output capability of 0.7 watt.

Both transmitter and receiver are of modularized construction, with all circuits built on printed boards.

At our request, the Varitronics people supplied a set of crystals with the unit, but the crystals were not on a standard frequency as supplied by the manufacturer, so Varitronics ordered the crystals from a large manufacturer of $C B$ crystals. To the initiated readers of FM, it would be hardly necessary to elaborate on this, but for the benefit of the newcomer, let it suffice to say that Varitronics erred by ordering the rocks from a noncommercial supplier; they were 10 miles off frequency and couldn't be tweaked on with the rubbering capacitor built into the rig. Varitronics could avoid this problem in the future by supplying a copy of the oscillator circuits to Sentry or International so that the oscillator characteristics can be taken into consideration on future crystal orders.

In evaluating the unit, we found the following faults:

The battery pack portion of the unit is of lower general quality than the electronics -- it required a bit of springbending to assure firm contact with all the cells. (The cells are standard D flashlight type.)

The receiver squelch control is quite critical, too. If set too tight only the transmitter in the building next door could be heard.

The portable whip antenna that attaches to the top of the unit is on the fragile side, and it would likely require replacement if subjected to the typical rigors of portable operation.

The current of one of the limiters (probably the second) is indicated on a front meter labeled "S-meter" -- hardly in keeping with traditional FM standards. Also, the meter is so sensitive that all respectable (quieting) signals deflect the meter fully. It would seem more valuable to have a meter indicating the discriminator reading rather than limiter. This would at least allow the operator to monitor his receiver frequency against that of the local repeater. A front-mounted discriminator meter would also be handy for those who use their units on vacation trips, where .94 might be a few kilohertz away from .94 (depending on the area of use).

The FDFM-2 is actually quite a bargain, though. It has a three-channel capability on both transmit and receive, as selected by a panel switch. And the unit sells for less than $\$ 200$ ($\$ 189^{\circ} .50$, if our information is correct).

The printed-circuit construction is of very high quality, and each internal section is completely shielded from the others (to minimize the problems of intermod and spurious interference).

Although the specifications show the sensitivity of the unit to be on the order of luV , tests proved the FDFM-2 to be better than 0.5 uV for 20 dB of quieting.

It was refreshing to note that the manufacturer's specifications were all on the conservative side. The FDFM-2 is a good value when the price tag is compared with other amateur radio units. It is difficult to refrain from making comparisons with Motorola and GE, both of which aremade for commercial use and which are priced at many times the cost of the FDFM-2. Obviously, this low-cost unit is not a MASTR or Motrac, but we think it would be hard to find a better value in new equipment of the FDFM's price class.

Texan named as SARAH 'Outstanding Amateur'

FM's winner of the coveted SARAH is Chuck Horton, of Lubbock, Texas. In spite of the fact that Chuck operates a two-way radio sales and service center in his area, he has earned a reputation for providing FM units to local amateurs on a no-charge basis, and of assisting the unfamiliar amateurs by giving his own time, equipment, and materials to tune up, install, and service those two-way units that he has converted to amateur use and donated to his fellow amateurs. Presentation of Chuck Horton's SARAH is FM's way of recognizing his outstanding contribution to amateur radio, and it is Sentry Manufacturing Company's way of telling him that his efforts exemplify the true ham spirit of friendliness and goodwill.

The SARAH, a trophy whose acronym stands for Sentry Amateur Radio Award of Honor, will be presented to Chuck by Ray Meyers (W6MLZ), noted newspaper columnist and radio personality.

The presentation will take place at the Sahara Hotel in Las Vegas during the January 1969 SAROC festivities.

Several other presentations will also be made at the Sahara. 73 Magazine will award a SARAH to Beatrice Dietz (WA2GPT) of Valley Stream, New York, who was cited for outstanding performance in the field of traffic-handling.

Honorable Mention notices go to Charles Bressette (W9YYL) of Sturtevant, Wisconsin, on behalf of FM, and to Robert Stone (WA6WHP) of Manhattan Beach, California, on behalf of 73 Magazine. Bressette's citation is made in recognition of the time, effort, and material contributions made by him to the amateur radio fraternity. Stone's citation of merit is made in recognition of his outstanding personal achievements and continued devotion to serving others. Stone's notice is particularly. significant in view of the fact that he is totally sightless!

Motorola Integratad Circuit APPLICATION NOTE ABSTRACTS

Motorola applications engineers have been busy preparing technical information geared to help the designer of sophisticated circuits. Some of these application articles are described here. Copies of them may be obtained by writing (using your company letterhead) to Technical Information Center, Motorola Semiconductora, Box 13408, Phoenix, Arizona. The papers described herein are based on the use of Motorola's expanding line of integrated circuits, Epicaps, and monolithic chips.

AN-133 Designing Low-Noise RF Input Transistor Stages
This comprehensive paper discusses metheds of reducing noise in basic amplifier circuits. Methods of meamuning noise, and "typical" noise data for circuia

AN. 134 Low-Cost Power Inverter Circuits Using Off-the-Shalf Components
Design of efficient power imverters requires careful matching of transistors, transformers, and starting network. This note provides insights to this matching problem and gives a comprehensive table at lowing the designer to select the proper transiztor for his specific inverter requirement.

AN-135 Selecting Commercial Power Transister Heat Sinks
This report describes the critical factors in heat sink selection and evaluates commercially avaitable heat sinks on this basis.

AN-139 Understanding Transistor Response
Parameters
This note explains high-frequency transistor sesponse parameters and discusses their interdependance. Useful nomograms are given for determinint $\mathrm{h}_{\mathrm{f}}, \mathrm{f}_{\mathrm{T}}, \mathrm{f}_{\text {ae }}, \mathrm{f}_{\text {max }}$, and many other parameters.

AN-140 Characterization of SCR's as Switches for Line Type Modulators
Although Silicon Controlled Rectifiers are highly desirable as switches in DC pulse circuits, they are usually specified and characterized for AC applications only. This article discusses the SCR characteristics desirable for DC pulse applications, and proposes simple test circuits for evaluating such devices as puise circuit switches. A device already characterized for such applications is described.

AN-147 High-Power Varector Diodes: Theory and Application
This articie treats varactors in non-rigorous terms, discussing what they are, how they work, and how to use them in practical high-power, high-frequency. output circuits.

AN-148 Integrated Circuit Reliabitity
Equipment relinbility is a prime justification for the tremendous effort being expended by the military and industry on integrated circuits. A recently compiled survey of electronic equipment field performance indicales that this improved reliahitity is being realized; this mote illumates how Matorola reliability research verifies the suivey.

AN-150 Getting Transistors Into Single-Sideband Amplifiers
Silicon power transistors coupled with unique circuit design approaches make possible a 30 watt peak-power single-sideband transmitter operating at 30 MHz .

AN-151 Charge Storage Varactors for Extra UHF Power
This report describes a varactor multiplier which may be used to achieve power outputs of more than 50 Watts at 150 MHz , and 20 Watis at 450 MHz . With such bigh-frequency capabitities, transistor-varactor combinations can replace triudes and klystrons in many UHF and microwave applications.

AN-156 An All-Solid-State Marine Band Transmittar
This report gives all the newessary details: circuit drawings, construction tediniques, ete., for a low - cost all - solid-state, crystal-controlled, marineband transmitter. The unit operates belweell 2.0 and 2.85 MHz , and features low current druin (1.5 Ade), a high efficiency output stage, and disect operation from a 13 volt de supply.

AN-159 Dasign Tips for Coaxial-Cavity Varactor Multipliars
Most microwave engineers picture a coaxial cavity as a bulky construction, difficult to design easily. This report demonstrates that varactor multipliers can easily be designed as small as any other. Design principles and operational data for $500 \mathrm{MHz}-1000 \mathrm{MHz}$ doublers are given.

AN-161 High Power RF Switching Diode Can Replace Mechanical Coax Relayz
This report gives a complete description of the detign and capabilities of the new MV1892 RF switching diode. Characterizing paramelers and varbous circuit recommendations are also given.

Silicen Power Tramsistors Provide New Sol tions to Voltage Control Problams
Three useful circuits - a short circuit proof voltage regulator, an inexpensive switching regulator and a 100 kHz dc-to-dc converter are described.

AN-165 Solid-State Television Vidao Amplifiers
A two-stage, all solid-state video amplifier, designed for use in large-screen television receivers, combines high-performance circuitry and low cost.
AN- 166 Using Linvill Techniques for AF Amplifiers
A design procedure, derived from theory developed by J. G. Linvill, simplifies the design of single stage smali-signal RF amplitiers. A 200 MHz amplifier serves as an example of the technique.
AN-167 Silicon Annular Switching Transistor Design Considerations
Transistor design considerations, such as geometry, trade-offs between transistor characteristics, and basic differences between NPN and PNP transistors, are discussed to provide an insight into optimum transistor performance.

AN-169 A Low Voltage High Current Converter
The output of low-voltage sources, i.e. solar ceils, etc., often must be converted to a higher voltage to be useful. Utilizing a high-performance power transistor to efficiently perform this task, this con verter can switch currents as high as 50 amperes.

AN-171
Design Considerations in High Voltage Video Dutput Circuitry
The relationship between transistor parameters and the gain and bandwidth of wide-band video output circuit is discussed and a circuit example is given to illustrate a typical application.

AN. 173 Reducing (di/dt) - Effect Failures in Silicon Controlled Rectifiers
In SCR circuits with device-limited currents, severe local heating problens often develop in the SCR's. Three useful techniques are presented to eliminate this problem.

AN-174 High-Efficiency, Low-Vitage lmerters
Two low-voltage inverter circuits, employing a new fast-switching power transistor. operate at approximately 80% efficiency, reducing heat dissipation to a minimum.
AN-176 Power Varactor Gives 5 Watts Output at $\mathbf{3} \mathbf{~ G H z}$
A discussion of the design and performance of the high power MV1808 vuructor, including denig details of a 1 GHz frequency doubler and a 1 GHz to 3 GHz tripler.

AN-177 Two Stage Varactor Multiplier Providas High Power at 400 MHz
This "times-eiglit" frequency multiplier can provide a nominal 40 watts of CW power at an output frequency of $400 \cdot \mathrm{MHz}$ with a conversion efficiency of 30 percent.

AN-178 Epicap Tuning Diode Theory and Applications General electronic--tuning considerations are discussed, including important parameters such as \mathbf{Q}. tuning range, and temperature stability.

A 4.5 MHz FET FM Phase Detictor
A 3 N126 junction tetrode FET allows the design of an all solid-state quadrature phase detector.

AN-181 A Ragulated Power Supply Using a Referance Amplitier
This useful industrial circuit, specially designed to provide highly stable output, uses a reference amplifier semiconductor device to minimize voltage fluo tuations and temperature variations.

A Method of Predicting Thermal Stability
Variations in DC bies current with temperature is an important consideration in the design of reliable transistor audio amplifiers. This note gives a useful roethod of predicting the thermal stability of biasing circuits.

AN-183
A Line Operated Solid State Phonograph Amplifier
FET's and a high voitage transistors combine to provide circuit simplicity hitherto unachievable in transistorized phonograph amplifiers.

A Single Stage Video Amplifier
High-performance germanium transistors allow the design of this simple, low-cost, single-stage video amplifier, suitable for small-screen television receivers.

AN-187 MECL Integrated Circuis Line Driver
Specially designed for high fanout capabilities. this integrated circuit line driver can supply a signal to 150 logic gates without deterioration.

Solid-State Pulse Width Modulation DC Moto

 ControlPulse-width modulation, an effective method of dc voltage control, provides motor speed regulation under varying torque conditions - ideal for traction drive vahicles.
AN-190 High Voltage Audio Amplifies
A line-operated, class A audio mpplifier, for consumer applications utilizes the 2 N 3739 high-olfage transistor to provide simple circuitry combined with high performance.

Varactor Diodes and Circuits for Migh Power Output and Linear Response
Three new varactors are described, and varactor multiplier circuits - a 50 MHz to 100 MHz push-push doubler, a 500 MHz to 1000 MHz harmonic doubler, and a 200 MHz to 600 MHz harmonic tripler -- are presented in detail.

Using Negative Bias to Improve SCR
Performente
The circuit designer can take advantage of a fundamental SCR property - turnoff gain at low anode current - to reduce turn-off time and increase holding current.

AN. 194 Designing Integrated Seriaf Counters
MECL monolithic integrated J-K flip-flops serve as building blocks for ultra-high-speed ripple counters. General design techniques for designing counter of any arbitrary count.

AN-196 Epicap Tuning of Resonant Circuits
Designers may now extend reliability and circuit performance by replacing mechanical tuning parts with new high Q Epicap voltagevariable capecttor tuning diodes. A design procedure leads to the sefection of the optimum Epicap for any circuit.

A Solid-State 15 kHz Power Inverter
Fast-switching power transistors allows the de sign of a high-frequency power converter featuring minimum size and weight of reactive components.

AN- 202 Noise Margins of MECL Intenrated Circuite

A knowledge of ground line and signal line do and pulse noise margins is essential to the logic do signers. Many curves illustrate the variations of imput and ground line noise margins with temperatuse and fan-out.

AN-203 Tuned Ampliffer Design with an EmitterCoupled Integrated RF Amplifier
This note describes the design of a tuned amplifier utilizing the MC1:10 integzated circuit as a basic building blotk. DC considerations, characterization in terms of y-parameters, and amplifier design using Linvill's method are discussed

AN-204 High Performance Integreted Operational

Amplifiers

Two new high performance monolithic opera tional amplifiers feature exceptionally high input $i m$ pedance and high open loop gain. This note describes the function of ouch stage in the circuit, methods of frequency compensating and de biasing. Four applications are discussed; a summing circuit, an integra tor, a dc comparator, ard transfer function simulation.

AN-207 Low-Cost FM Stareo Multiplex Dermodulator
An FM stereo multiplex demodulator employs ow-cost silicon ennular plastic encapsulated NPN and PNP transistors to provide high performance for consumer applications.

AN-208 A Unique, Ultre-High-Speed, Switching-Time

 Test DeviceUltra-high-speed test fixture allows accurate measurement of switching times fof a wide variety of transistors.

AN-209 A 4-Watt Wide-Band Solid-State Amplifiar

A simple, direct-coupled, wideband amplifier provides 4 watts into an 8 ohm load from 35 Hz to 100 kHz with less than 1% harmonic distortion to 20 kHz .

AN-210 FM Madulation Capabilities of Epicap VVC's

The author shows by empirical methods that the frequency vs. yoltage curve for Epicap voltage variable capacitors is linear for small (sufficient for most FM modulator applications) voltage variations.

A rigorous mathematical explanation of this linear interdependence follows the empirical demonstration.

AN-211 Field Effect Transistors in Theory and Practice.
The basic theory, construction, and application information for field effect transistors (junction and MOS types) are given. Also included are some typical test circuits for checking FET parameters.

AN-212 A Low-Cost All Solid-State FM Discriminator

 for Consumer ApplicationsThe application of a matched pair of diodes in one plastic encapsulated package to a discriminato type FM detector can eliminate that difficult and expenstive probteri of diode-mateling usually necessary in these circuits. Critical performance curves of an FM detector with a two stage limiter, designed especially for solid-state TV applicutions, illustrate the ex cellent performance available using this device.

AN-213 Varactor Multipliers Provide High Output Power Above 6 GHz
The author employs a high performance varac or diude in the design of several multiplier circuits which feature exceptionally high output power versus requency capabilities. Among the circuits discussed are a 2 to 5 GHz doubler, a 2 to 6 GHz tripler, a 2.83 to 8.5 GHz tripler, and a 500 MHz to 4 GHz ore-step multiplier.

A physical and electrical characterization of the NS 154 , ins 155 varactors, sufficient for design purpowes, precedes the actual design dizcussiun.

AN-214 A 160 MHz 15 Wett Solid-State Power
Amplifier
High performance RF power transistors make possibte the design of a throe stage 160 MHz amplifiet with is Watts power output. The amplifier oper ates on 28 Vde supply voltage with ansoverall efficiency of 62%, and features 30.5 dB overall power gain

The author employs large-signal transistor in put-output admittance data in the network design for this amplifier.

AN-215 RF Small Signal Design Using Admittance Parameters
The author shows that the power gain and sta bility of high frequency transistors may be com pletely described by two-port parameters.

This paper presents a summary of the overall design solution for the small signal RF amplifier using admittance parameters. Design considerations and relationships for both stable and the potentially unstable transistor are presented together with a discus sion of the neutralized, unneutralized, matched, and mis-matched amplifiers.

AN-216 UHF Transmission-Line Oscillator-Design Using the Smith Chart
Two high performance UHF oscillators; a 500 MHz, 1 Watt oscillator: and \& GHz 0.5 Watt ossilit tor employ transmission lines for linear elementa The author illustrates that the use of transmission lines simplifies the breudboard design of many UHF circuits. An important feature is the use of the Smith Clart to simplify the network synthesis.

AN-217 UHF Transmission Line Power Amplifier
Dasigned with Smith Chart Techniques
A UHF power amplifier capable of 2 Watts power output at 450 Mifz employs transmission line for linear elements. The author illustrates that the use of transmission lines simplifies the design of many , HF circuits.

AN-219 The Fiold Effect Transistor in Digital Applications
Field effect transistors have definite advantages over junction transistors in many digital spplications; high fan-out, direet coupled circuitry (lower component count), extremely low power dissipation, and low temperature coefficient circuits are among the most important.

This paper provides the designer with an up-todate discussion of JFET and IGFET switching characteristics and how they are used in the design of basic digital circuits. The final portion of this paper discusses a family of JFET logic circuits, a farnily of IGFET, and future prospects.

AN-220 FET's in Chopper and Analog Switching

Circuits

The author's discussion begins with elementary chopper and analog switch characteristics -- explores fully the considerations required for conventional and FET chopper and analog switch design - and finishes with specific FET circuit examples.
AN-221 4-Layer and Current-Limiter Diodes Raduce Circuit Cost and Complexity
The authors present four simple circuits in which 4-layer diodes and current-limiter diodes are used to provide increased circuit performance: A Saw-looth generator (two variations), a staicase generator and a ring counter.

A brief discussion of the electrical characteristics of 4 tayer and field effect diodes precedes the circuit examples.

AN-222 The ABCs of Solid-State DC to AC Inverters

The author provides an exhaustive examination of the entire field of de to ac inverters. Among the topics discussed are: the proper inverter for a specific application; operation principles of different types of inverters; the problem of proper devies selection in the design of inverters; an inverter design example.

AN-223 Cascade Noise Figure for Intagrated Circuit

Transistors

In vacuum tube circuitfy, the combination of the grounded-athode and the grounded-grid cascade has superior noise properties to all other two stage amplifiera. In teansistor circuitry the noise performance of a single-stage amplifier is well known, but liete information has been published about the best performance oblainable from two-stage transistor amplificrs. This paper evaluates the noise perform ance of all possible twostuge trinsistor amplifiers. Also, since the noise contribution of stages beyond the second is normally smitl, this analysis will be valid for amplifers with any number ol' stages.

AN-224 Safe Areas of Silicon Annuler Tramastors
Twenty-five high frequency tilicon annultr ransistors are characterized by their saft area operating curves.

A short discussion of the test procedures and circuits used to obtain these safe area curves intro duces the topic.

High Performance All Solid-State Servo Amplifiers
The design of 7.5 Watt transformer-coupled solidstate servo amplifier and a 10 Watt complemen-
tary transistor servo amplifier are fully discussed. The transformer coupled amplifier, requiring only three transistors, provides a stable voltage gain of 100 . The complementary amplifier, though more complex, direct coupled throughout thus eliminating the trans former and its accompanying phase shift problems.

AN-226 Thermal Measurements on Semiconductors

This note describes the teclaniques used by Motorola to obtain the thermal resistance of tran sistors, rectifiers, and thytistors.

AN-227 Thyristor Trigger Circuits for Power-Control Applicatioms
Featuring simplicity and fow cost, these new power-control circuits can control up to 3 kW from a 120 volt line with the proper SCR and heat sink

AN-228 20 Watts at $16 H z$ with Sted Recovery

Varactors
Varactor harmonic multiplier circuit power handling capabilities have now been extended to 20 Watts at 1 GHz and 10 Watts at 2 GHz by two new varactors, the 1 N5 149 and IN5150. This note provides a complete discussion of the design and performance of these two varactors. Several high per formance multiplier circuits: $a 0.5 \mathrm{GHz}$ to 1 GHz doubler: 30.4 GHz to 1.2 GHz tripler; and a 0.46 CHz to 1.84 GHz quadrupler are also discossed.

AN-229 High Speed Complementary Flip.Flop Features Extremely Low Power Dissipation
New complementary micro-power transistors permit the design of a ultra-high speed fip-flop fea turing extremely low power dissipation. The com plementary charscter of the 2 N 3493 and 2 N 2409 " 0 -pF" transistors alluw the cugineer to design flip flops with high operating frequency, high circuit efficiency, and high gain.

AN-230 Complomentary Solid-State Audio Amplifiers
Two direct coupled complementary amplifier are discussed - a 10 watt and a 50 watt amplifier Both amplifien have excellent frequency response and provide their rated output from 20 Hz to $20 \mathrm{kHz}^{2}$ at less than 1% harmonic distortion.

AN-2

FET Differential Amplifior
The field effect transistor is often a better choice than the bipolar transistor in many differential amplifiex applications, particularly when high input impedance is required. This report discusses drift compensetion of field effect transistors for differential amplifier applications.

AN-232 $\quad \mathbf{9 . 5} \mathrm{GHz}$ to Watt Two-Stage Cascade Multipliar
Two high-performance varactors - - the INS 149 and in5150-- are employed in a cascade multiplier which features over 10 watts power output at I.S GHz.

AN-233 Design of Monostable Multivibrators Using
MECL Integrated Circuits
This application note describes an integrated monostable multivibrator composed of a MECL R-S or J-K flip-flop plus a few discrete components. A main feature of the multivibrators is their complete compatibility with the MECL family of current mode integrated circuits. These multivibrators can provide a timed output ranging from 60 ns to the millisecond range. The note discusses special circuits which have even faster recovery times. Pulsed recovery (recovery during any point during the delay time) is possible with both types of multivibrators.

AN-234 MRTL Family of Integrated Circuits

The purpose of this note is to familiarize the logic designer with the Motorols Resistor Tranzisto Logic (MRTL) family. Logic diagrams, pin layouts, and loading data are given for each device. Three itlustrative applications of MRTL: an asynchronous 4 bit compatator, an asynchronous 5 -bit adder, and a shifi register, serve as design examples. This family is noted for its economy and variety of logical elements.

AN.235
Using the Motorola MDTL Line of Integrated Circuits
The MDTL line of integrated circuits is briefly characterized with inportant capabilities of the MDTL series, sach as noise immunity, discussed. MDTL applications are presented, including shift registers, tipple counters, clocked counters, and decade shift counters.

AN-236 Using the Motorola Milliwatt Family of Integrated Circuits
This note familiarizes the logic designer with the Motorola Milliwall Resistor Transistor Logic (miW

MRTL) family. Logic diagrams, pin layout, and loading data are given for each device. Several applicatuns of mW MRTL devices are also given throughout the paper. This family is noted for low power dissipation and a valicty of logie ciements.

AN. 237 Feedback Capacitance of Transistors
The maximum useable gain of an amplifier is a function of two separate mechanisms: the available forward gain, and the reverse transfor impedance. This report tells how to improve feedback capacilance so as to achieve greater amplifier gain.

AN-238

Transistor Mixer Dosign Using Admittance
Parameters
Mixer circuit design may be simplified by the use of small-signal admittance parameters. This note describes in detail the effective application of this design technique and the corresponding results. Several design examples are discussed.

AN-239 MECL Integrated Circuit Schmitt Tripers

The Schmitt Trigger, a regenerative circuit which changes state abruptly when the input signal crosses speciffed de trigger levels, can be fabricated from MECL integrated logic gates. This note describes the modifications necessary to convert standard MECL logic gates to Schmitt Triggers, and also the performance to be expected from such units. Examples of the MECL. Schmitt Trigger used for wave shaping and pulse generator applications are also included.

AN-240 SCR Power Control Fundamentals

Recent high volume production techniques have brought SCR prices down to the point that almost any electrical product can benefit from elec tronic control. This article takes a look at som fundamentals of power control using these devices.

AN-241 Low-Cost High-Voltage Servo Amplifier
The availability of low-cost high-voltage power ransistors make possible the design of a practical high voltage servo amplifier without transformers and with greatly reduced phase ehift problems.

AN-242 A Modulated SCR Zero-Point Switching Circuit
By employing SCR devices in azero-point AN-252 switching mode, the circuil derigner can gratly reduce RFI generation. This note deacribes the zeropoint switching concept, and provides in cricuit dosign example (AC controller . . DC hall-weve cootroller).

AN-243 Transistor-Varactor-Multiplier Versus
Transistor-Multipliar
Several watts of power in the upper portion of the I. band may be obtained with either the tansistor amplifier driving a varacter multiplier (TAVM), or the transistor amplitier-multiplier (TAM). This report presents a careful evaluation of both typer of circuits.

AN-244 The MECL Line of Digital Integrated Circuits
This note familiarizes the digital integrated circuit user with Motorola MECL integrated circuits: pin layouts, and logical diagrams. Pertinent characteristics for each device in the MECL integrated circuit line are given. The note includes applications of various circuits illustrating the versatility of the MECL family. High speed operation, high input impedance. high fan-out, and very low internally generated noise chatacterize the line of integrated circuits.

AN-245 An Integrated Core Memory Sense Amplifier
This application mote discusses core memories and related design considerations for a sense ampli fier. Performance and environmental specifications for the amplifier design are carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and measured performance is discussed. The amplifier features a small uncertainty resion (6 mV max). adjustable voltege gain, and fast cycle time ($0.5 \mu \mathrm{~s}$).

AN-246 A 50 Watt $50 \mathrm{MHz}_{2}$ Solid-State Transmitter

This threc-stage, three-Aransistor transmitter can provide 50 watts continuous power outpul at 50 MHz with $\mathbf{6 2 \%}$ overall efficiency. The author employs a straightforward design approach based on large-signal transistor input/output admittances.

AN-247 An Integrated Circuit RF-IF Amplifier

A new, versatile integreted circuit for RF-IF applications is introduced which offers high gain, extremely low internal feedback and wide AGC range. The circuit is a commonemittes, common-base pair
(the cascade connection) with an AGC transistor and associated biasing circuitry. The amplifies is built on a very mall die and is econornically comparable to a single transistor, yet it offers performance advantages unobtainable with a single device. This application note describes the AC and DC operation of the eircuit, a discussion of Y-parameters for calculating optimum power and voltuge gain, and a variety of applicationt as an IF single-tuned amplifier, IF stagger tuner amplifier, osciliator, video-audio amplifier and modu lator. A discussion of noise figure is also included.

AN-248 A High Voltage Monalithic Operational Amplifier
This note introduces a high voltage monolithic operational amplifier featuring high open loop gain, large common mode input signal, and low drift. The function of each stage in the circuit is analyred, and methods for frequency compensating the amplifier are discussed. DC biasing parameters are also examined. Four applications using the amplifier are discussed: a source follower, a twin tee filter and osciltator, a Bltage regulator, and a high input impedance voltmeter.

AN-249 Designing Around the Tuning Diode inductance
The effect of varactor inductance is described, and equations and graphs are presented in order to predict the inductance value and to determine when its effects on performance is significant.

In addition a design example of a varactortuned capacity-toaded half-wave cavity from 470 MHz to 890 MHz , and derivations of design equations for varactor tuned quarter wave and half-wave cavities as well as for lumped series tuned circuits are shown.

AN-251 Decade Counters Using MRTL Integrated

 CircuitsThis application note discusses the design and implementation of decade counters using the MRTL family of integrated logic. Ripple counters, shift counters, and parallel clocked counters are developed using BCD, 2'421, and excess 3 digital codes. Up and down counting techniques are discussed. Output decoding, problem areas and circuit limitations are covered for all counter types.

Choosing MRTL Integrated Logic Circuits
This article discusses resistor-tratisistor logic MRTL, integrated circuits, and the considerations a user should make prior to using this integrated circuit family. Full consideration is given to the advantages as well as the limitations one encounters with this logic form. The discussion is general in nature and applies to all popular versions of resistor-transistor logic.

AN-253

An Analysis of MRTL Integrated Logic Circuits
Special emphasis is given to noise margin specifications, large circuit fanoout, operating speeds, and interfacing with saturated logic in this analysis of Motorola MRTL integrated logic circuits. The J'K filp-flop circuis is reviewed and batic counting and chifting circuits are presented to illuatrate typical J-X meplications.
AN-254 Using MRTL Integrated Circuit Flip-Fiops
Circuit operation of MRTL J-K flip-nop is explained fully. The RS fip-flop is also briefly discussed. Pulse input requirements and loading considerations are discussed and some applications of the J-K flip-llop shown in the form of minimum-logic small-count counters.

AN-255 Comparison of Seven Digital Integrated Circuit Logic Lines
No one logic line is clearly superior to all ouhers for all applications. Each logic line has certain appilcations for which it is ideally suited. For each application the user must select the integrated ciscuit line which best meets his total systems requirements. Such factors as power consumption, speed, system flexibility, noise immunity, and, of course, cost, must be considered.

This application note discusses the relative trade-offs of seven different integrated ciscuit logic lines. The strengths and weaknesses of each logic line is discussed, and the lines are compared on the basis of the critical factors mentioned above.

AN-256 Examining Ultra High-Speed Intagrated Circuit System Interconnactions
If the digital systems are to benefit fully from the latest increase in integrated circuit speeds, the wiring delays between circuits must be reduced.

Reducing the wiring length to minimize these delays requires structures with a high density of interconnections. However, even with such microunter
connection structures, transmission-line considera tions - output loading, signal reflections and signal cross-coupling - must be applied to the wiring design because the new circuits are so fast.

In addition to the above considerations, crosstalk, multi-layer printed circuit boards, methods of interconnecting numerous unpackaged integrated circuits, system-design and thermal problems will be considered in this note.

AN-257
Decade Counters Using MECL J-K Flip-Flops This note discusses the use of MECL integrated circuits in four types of decade counters. The logic and circuit design of an excess three up-down count01, a $2^{\prime} 421 \mathrm{up}$-down counter, a gray code counter, and a switch-tail ring counter with ten line output are illustrated.

AN-258 Monostable Multivibratos Dasign Using An Integrated Circuit Oparational Amplifier
This application note discusses the use of intepreted operational amplifiers connected as monostable multivibrators, The classical monustähle circuit including some limitations with respect to the conventional component and integrated device designs are briefly reviewed. The basic circuit theory and qualifications of the operational amplifier connected as a monostable device are then discussed and the timing equation derived. Alternate monostable configurations and their ultimate design limitations are briefly reviewed with respect to utilization of the MC1430/1530 and MC1431/1531 family of devices. Finally a design example is used to illustrate the principles and limitations outlined.

AN-259 Using Integrated Circuits in a Stagent Tuned IF Strip
Integrsted Circuits are quickly becoming "the way to go" in the electronic industry, and justifiably 20. Their smali sizt and high reliability, coupled with low cost make them an ideal component for radio television, communication gear, computert, and an infinite number of other uses. This application note describes the use of an Integrated Circait High Frequency Amplifier, the MC1550, in a steper tuned IF strip. The design frequency is 45 MHz ; however, the procedure is siniliar for designt covering its ful range of operation (DC to 300 MHz).

AN-260 Solecting Varactor Dioden
High output power in the UHF region can be achieved with veractors. A device salection procedure based on experience, theory and common sense is offered.

AN-281 Transistor Logarithmic Conversion Using an Operational Amplifier
The design of a log amplifier using a common base trantistor configuration as the feedback element of an integrated circuit operational amplifier circuit is discussed in this application note. Six decades of logarithmic conversion are obtained with less than 1% error of output voltage. The possible causes of error are discussed followed by two applications: direct multiplication of two numbers, and solution of the equation $\mathbf{Z}=\mathbf{X I}^{\text {n }}$.

AN-262
Decade Counters.Using MDTL Integrated
Circuits
Decade counting is a basic digitul operation and may be performed by a wide variety of counting circuits. This note illustrates how some of the consmonly used $\div 10$ counting techniques can be tecomr plished with Motorole Diode-Transistor Logic (MDTL) integrated circuits. Ripple, clocked, and mift deceade counters using a variety of codin高 methods mre discussed.

AN-263 Choosing DTL Integroted Logic Circuits

This aticle discusses diode-transistor logic. DTL, integrated circuits, and the considerations. usor should make in choosing this integrated circuit family. Consideration is given to the advanages and limitations one encounters with this logic form. Three versions of DTL are considesed in this repurt; conventional DTL, modified DTL, and high noise immunity DTL.

AN-264 MRTL Integrated Circuit Shift Registers
This note discusser the design considerations for the implementation of a 16 -bit shift register using J-K llip-flops. The shilt register described has the capability, upon command, to shift left or shift right and to enter information serially or in paraliel. All problems encountered in the implementation and operation of the register are discussed.

AN-266 MECL Integrated Circuit Flip-Flops
Current Mode bistable elements are discussed along with pertinent characteristics and specifications. The R-S, J-K, and MasterSlave types of flipflops are evaluated according to performance. Methods of reducing overshoot when driving a large number of flip-flops and flip-flop fan-in, fan-out capabilities are also given.

AN-267 Matching Network Designs with Computer Solutions
Computer solutions for four networks commonly used in solid-state high frequency amplifiers have been tabulated.

AN-268 Pulse Triggering of Radar Modulator SCA's Factors involved in dynamic gate triggering are examined and relations of gate triggering characteristics to variations of total current amplifications with gate current are shown.

AN-270 Nanosecond Pulse Handling Techniques
The rapid advencement in the field of high speed digital integrated circuits has brought into focus many problem areas in the methods of pulse measurement techniques and new concepts dealing with these problems. This paper is intended to discuss the more common, yet perhiaps not well known, pitfalls of measurement systems, a method of detecting them and possible solutions.

AN-271 Breadboard Techniques For Low Frequency Integrated Circuit Feedback Amplifiers
Certain considerations, unnecessary for discrete devices, are of critical importance in the breadboarding of integrated citcuit svatems. This paper provides the enginect or technician with some wiring tips ano important precautions for integrated circuit breadboarding.

AN-273 More Value put of Integrated Operational Amplifier Data Sheets
The operational amplifier is rapidly becoming a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a bettef understanding of the open loop characteristics of the amplifier and their significance to ovetall circuit operation. Also, each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. lnput offset circuit are also reviewed with respect to closed loop operation.
AN-274 MECL Integrated Circuit Shift Registers
A generic shift-tight, shift-teft register with parallel entry, end-around-shift, and complementation capabilities is discussed. Maximum practical operating speed, delay times and timing considerations of the logic gating signals are determined. The besic register as developed may be used for data handing, for number sealing, or in the arithmetic portion of a digital computer.

AN-275 Audio Power Generation Using Integrated Circuit Operational Amplifiers
Three complementary audio frequency amplifiers are discussed, each using an MC1533 integrated circuit operational amplifier to obtain the desired voltage gain and reduce the distortion figure. The 4 Watt and 20 Watt amplifiers have strictly Class B output stages, while the 50 Watt amplifier employs a Class $A B$ output stage. Harmonic distortion is less than 0.7% and intermodulation distortion is less than $\mathbf{0 . 6 \%}$ for all three amplifiers. Frequency response of the amplifiers is from de to 20 kHz .

AN-276 Useful Frequency Range Extension for MC1530 Operational Amplifiers
This application note explains various frequency compensating techniques designed to extend operating frequency of the MC1530. In addition circuit configurations are frequency response curves are shown for various compensation techniques. Examination shows this amplifier can be used at frequencies up to 14 MHz .

AN-277 Overshoot and Ringing in High-Spead Digital Systems
The amount of overshoot and ringing that may be expected in a system is determined as a function of driving source impedance. rise-lime, witing length. and loading. Determination of allowed overshowt and methods of reducing overshoot are discussed for conventional point to point wiring methods. Capacitive loading effects of MECL devices and circuit hardware are also discussed.

AN-278 Using Shift Registers as Pulse Delay Networks
This note discusses high speed clocked shift register using J-K flip-flops and employed as a digital incremental delay. The register may be clocked with a frequency division counter to accomplish any desired delay with increments as small as 20 ns. The circuit as developed may be used for timing basic computer decisions or as an adjustable delay line for pulse.

AN-279 Setup and Release Timas in the MRTL J-K Flip-Flop
This application note discusses the setup and release times for J-K flip-ilops. The method used to measure setup and release time is discussed. A few simple decade counters are analyzed for worst case release times.
AN-280 MECL 70 MHz J-K Flip-Flop
A new high-speed 3 -K fip-flop is discussed. Capabilities, performance, and applications are explaired along with typical and worst case operating data. This flip-flop with four J inputs and four K inputs more than doubles the operating speed of registers and counters as employed in a system.

AN-282 Systemizing RF Power Amplifier Dasign
The design of high-power, Class C, RF transistor amplifiers can be greatly simplified through the use of large-signal device characterization. This note explains design procedures and furnishes large-signal impedance data for thirteen Motorola RF powet transistors.

AN-283 Using MDTL IC Fiip-Flops
To proporly inplement a logic system with integrated circuits, it is important that the togie desigher be familiar with the devices he uscs. One of the more complex of integrated circuits is the clocked fip-flop. The purpose of this report is to acquaint the reader with the operation of the MDTL flip flop, to discess the different modes of operation, and to show some ty pical uses for this flip-flop.

AN-284 MDTL IC Shift Registers

This report shows some frequently encountered shift register designs implemented with MDTL logic devices. Various operatine characteristics are discussed as well as some of the important design considerations.
AN-285 Loading Factors and Paralleling Rules for
MRTL Integrated Circuits
The need for loading factors in Motorola Resistor Transistor Logic (MRTL) is discussed and proper usage is illustrated. Modification of loading factors is covered for the case when circuit outputs are paralleled. Illustrations are provided by using the MC700P Series of integrated circuits.

- AN-286 Binary Addition Using MRTL IC's

This note discusses the principles of binary addition with positive numbers and considers the implementation of binary adders with MRTL. The full adder function is illustrated using MRTL half adders, NOR gates arranged to simulate half adders, and with NOR gates in a two level logic scheme.

The full adder and associated logic is developed for a four-bit parallel (asynchronous) adder and for serial (synchronous) adder.

- AN-406 UHF Broadkand Amplifier Amplifier Dasign

A design technique is given for a wideband amplifier operating at UHF frequencies. A shuntshunt feed-back network and Y -parameters at sampied frequiencies are used.

- AN-288 Color TV Salid State Horizontal Deflection

This report describes a horizontal deflection system for a large screen (23 inch) color television receiver capable of delivering an ultor power in excess of 40 Watts at 24 kV . The system includes a horizontal phase detector, AFC amplifier, horizontal occillator, predriver, driver, and two horizontal output devices operating in a paraliel mode.

- AN-290 Maunting Procedure and Thermal Aspects of Motorola Plastic Powar Transistors
Heat sink mounting methods are described and illustrated and thermal resistance characteristics are shown.
- AN-291 External Direct Setring of MRTL Oual J-K

Flip-Flops
A method is described to obtain full functional capability from MRTL dual flip-flops by connecting external circuitry to the proper terminals. Applications are provided that illustrate a reduction in package count by using this configuration as compared to
the employment of single unit, full capabiity flipflop circuits.

- AN-292 Thermal Response of Semiconductors

This note explains a workable method - using the concept of transient thermal resistance - of predicting junction lemperature at any point in time regardiess of the power waveform.

- AN-293 Theory and Characteristics of the Unijunction Transistor
The unijunction transistor is examined as to theory of operation, design structures, static and transient characteristics.
- AN-294 Unijunction Transistor Timers and Oscillators

Twelve different unijunction transistor circuits, complete with parts lists are given. Temperature stabilization of the peak-point voltage is examined and dynamic operation paths are discussed.

- AN:295 Suppressing RFI in Thyristor Circuits

Measures taken to suppress RFI are shown. Design considerations and examples are explored as well as some solutions to the RFI problem.

- AN-296 Construction of A Master-Slave Flip-Flop from MRTL Gates
Information is provided on the construction of a master-slave flip-flop circuit from standard MRTL gates. Characteristics of the resulting circuit are given and an application of the configuration illustrates the advantage of this type of flip-flop.
- AN-297 Integrated Circuits for High Frequency to Voltage Conversion
This application note concerns the technique of using integrated circuits in a linear frequency to voltage converter from 1 MHz to 30 MHz . A theoretical analysis is given as well as a working desigh.
- AN-298 Noise Immunity With High Threshold Logic

A comparison of noise immunity characteristics is made between MHTL devices and standard saturated logic devices.

- AN-410 A Unified Approach to Optimum FET Mixer Dasign
The optimization of conversion gain, noise fig ure, and cross modulation are treated in relation to the basic mixer analysis and meaningful device parameters.
- AN-400 An Operational Amplifier Tester

A simple and inexpensive tester for Motorola's line of operational amplifiers is described which will measure the open loop voltage gain, the equivalent in: put offset vollage, the maximum positive and negro tive output voltage swing, and a view of the traisfer function which shows the linearity of the device.

- AN-401 The MC1554 One-Watt Monolithic Integrated

Circuit Power Amplifier
This application note discusses four different applications for the MC1554, along with a cercuit description including de characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

- AN-402 Insulated Gate FET's Used in IC's

The note acquaints the circuit designer with the integrated FET. A brief description of the operation of the Insulated-Gate Field Effect transistor is presented. This discussion is followed by a deseription of the FET in integrated form and finally, the basic advantages of FET IC's are explored.

- AN-403 Single Power Supply Operation of IC Op Amps

A split zener biasing technique that permits use of the MC1530/1531, MC1533, and MC1709 operational amplifiers and their restricted temperature counterparts MC1430/1431, MC1433 and MC1709C from a single power supply voltage is discussed in detail. General circuit considerations as well as specific ac and de device considerations are outlinted to minimize operating and design problems.

- AN-404 A Wideband Monolithic Vided Amplifier

This note describes the basic principles of ac and dc operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.

- AN-405 DC Comparator Operations Utilizing Monolithic IC Amplifiers
The use of the MC1533 operational amplifier and the MC1710 differential comparator are discussed. The capabilities and performance are given along with typical operating curves for both devices.

FM TO BACK REPEATER RULES PLEA

Most FM'ers are aware of the fact that a petition submitted by the Buffalo Amateur Repeater Society is now under consideration by the FCC. The Buffalo petition represents a longneeded change in FCC rulemaking philosophy. Current indications are, however, that certain portions of this petition will be denied. For this reason, the editorial staff of FM Magazine has committed itself to the drafting of a completely new petition based on: (1) urgent needs of repeater owners, (2) current operating and control practices, and (3) sensible and reasonable methods for logging and monitoring.

A conflict of FCC requirements with regard to repeater identification prompted me to query Mr . James Barr, chief of the FC'C's Special Radio Services Bureau. I was also troubled by the virtually impossible "time" logging requirements, the varying interpretations of fixed control, and a multitude of other problems, not the least of which is the noticeable absence of repeater references in FCC Rules and Regulations. Here, in part, is the letter to Mr. Barr:

James E. Barr, Chief, Safety \& Special Radio Services Bureau Federal Communications Commission Washington, D. C. 20554

19 Oct. 1968
Dear Mr. Barr;
A year ago there were less than one thousand FM amateur radio operators. Today, there are more than ten thousand. The vague areas in the Rules (Part 97) pertaining to remote control and repeater operation were unimportant a few months back; today they are being read, reread, analyzed, and dissected by thousands who either: (1) intend to remotely control amateur equipment, (2) do now
remotely control amateur equipment, (3) intend to own or operate through a repeater, or (4) do now own or operate a repeater.

Occasionally, an amateur writes the FCC to interpret a particular passage in the Rules. More frequently, amateurs write FM Magazine to get the editor's opinion. As editor, when I receive queries, I try to be as liberal as possible in my interpretation while staying within the intent of the ruling in question. The FCC's responses, however, are often as puzzling as the Rules themselves.

A few weeks ago, I questioned the FCC about a "three-minuteidentification" ruling handed down by an FCC representative. The mandate...is a requirement to identify a repeater at three-minute intervals. Close examination of the referenced Rule (Part 97) is at variance with the FCC man's statement. My query about this inconsistency has not yet been answered, but I look forward to a clarification in response to this letter...

More recently, another amateur questioned the FCC about remote control. The response, from your office, states that the call signs of all stations using a remote must be logged, and that user stations need not \log the data...

Clearly, a definite and growing need exists for a complete definition of the Rules, as I think you'll agree. For this reason, I would like to describe typical remotes and repeaters and show how they are used. Then, I would like to itemize certain of the Rules and show my interpretation. Finally, I would like to question you as to how you would interpret certain listed ragulations that are ambiguous.

The reasons for all this are manyfold. First, I am writing, under contract to Editors \& Engineers, Ltd. (Howard W. Sams, Inc.), a complete treatise on repeaters and remotes entitled "The Radio Amateur's FM Repeater Handbook." Also, as author of this handbook and editor of FM Magazine, I would like to express interpretations of the Rules according to the educated viewpoints of FCC representatives, and publish these opinions...

Second, I would like to get a "fix" on the aspects of the Rules where the FCC's interpretation differs from the adopted interpretation (as in the 3 -minute ID case), so that a petition can be put into motion to change these areas of the Rules.

Let me describe the operation of a typical remote installation. One UHF repeater (usually operating in the 450 MHz band) is placed in service at a hilltop location. On command from the licensee, a remotely situated base station (usually 50 MHz or 150 MHz) is interconnected with the UHF repeater so that all incoming repeater signals are relayed by the remote base station (and vice versa). Although the remote installation may be licensed to but one individual, there are usually between five and twenty users of the remote operating on the control frequency so as to communicate through the remote base station.

Referring again now, my fourth paragraph, you will see wherein the confusion lies. "User stations" in FCC's eyes are not "user stations" in the eyes of the repeater operators. These individuals consider "user stations" to be UHF repeater users who have the capability of accessing the base station at will. The FCC's definition appears to include all stations heard by the base station,

The next point I wish to bring up has more impact and overall significance to remote operation than any other: Frequently in the Rules and in FCC letters are references to control
"from the fixed authorized control site." Many amateurs have been afraid to control their equipment from mobile or portable control installations because of the emphasis on "fixed." On the back of an amateur license, however, it states that the control point is "considered...fixed," though "operated fixed, portable, or mobile." An FCC statement concurring with this interpretation would be welcomed by all remote operators.

As an added safety measure -- and to minimize the congestion on already crowded bands -- some repeater owners have installed methods for "subcontrol," which are not covered in the Rules. Let me give an example.

I operate a licensed two-meter remotely controlled repeater at Radio Ranch that is capable of being used at any time the unit is subject to control by the licensee... which is virtually a 24 -hour-a-day proposition. Some of my associates felt that a continuously operating repeater was not a good thing because: (1) some people would use the input channel to communicate directly, without the need for a repeater, so the repeater would be operating without being used; and (2) some amateurs would transmit on the input channel without an awareness of a repeater, causing the repeater to interfere with possible activity on the output channel.

To preclude these possibilities, I installed a mechanism whereby the entire repeater would shut down automatically two minutes after the last carrier disappears from the input channel. But to regain the usefulness of the system, I also installed a broad decoder at the receiver so that it could be turned back on again by any operator on the channel with the ability to utter a short whistle.

I refer to this as "subcontrol" because it in no way affects my own control, which is ready to turn the repeater on
or off regardless of the subcontrol status.
...I am apprised that the Buffalo Amateur Repeater Association has submitted a petition to you dealing with operation of repeaters in general. This letter should in no way influence your decision on that. What I am asking for is a fair and liberal interpretation of the existing Rules so amateurs will need not fear using a little initiative in their projects.

I think you'll agree that the "subcontrol" concept is in the best interest of amateur radio; that the "fixed" requirement can be interpreted more broadly; and that three-minute identification for repeaters is only necessary in explicit compliance with Part 97.87 (a) (i) (ii) and (iii).
...Most of us who own and maintain repeaters are sympathetic with the FCC on (logging). We realize that the Rules were written before the advent of repeaters, and therefore that the FCC has no choice in the matter. Speaking for all FM'ers, however, I ask your indulgence with respect to logging. Be particularly liberal here, and remember that amateur radio will not best be served by strict enforcement of outdated Rules. The need now is for reasonable and just interpretation of excessively stringent requirements. The Rules were set down when amateur radio was in its infancy. The FCC has always been an agency that relied heavily on "intent" rather than the "letter" of the law. The logging intent, as I understand it, was to provide legal evidence of a person's activity in the event of eventual questions regarding that station's operation. This intent could be served by the following:

1. Log the time at which the repeater is activated.
2. Log the time that it is shut down (for repair or other reason).
3. Log all changes in power, radiation characteristics, etc.

Mr. Barr, you will acknowledge, I'm sure, the fact that the FCC does have
the power to delineate policies at variance with the Rules. As an example, I make reference to the stated requirement in the Rules (Part 97.103b) where a \log must show the signatures of all amateurs who key the transmitter. The FCC, recognizing the impossibility of this, made a prima facie exception to the Rules in this regard. I call upon you now to make another exception. I ask you to consider a repeater in the same permissive light you consider a mobile, which (Part 97.103a) requires a log entry only (1) at the time of initiating mobile operation and (2) at the time of completion of mobile operation...

Very sincerely yours,

Ken W. Sessions, Jr.
K6MVH
Editor, FM Magazine

And here is Mr. Barr's response:

Dear Mr. Sessions:

I have asked Mr. Everett Henry, Chief of the Amateur and Citizens Division, to look into the various problems raised in your October 19 letter, and a further response will be made. It occurs to me, however, that your principal concern is basically the fact that present Rules may not be compatible with current conditions and practices. This seems to me to call for a change in the Rules, rather than for a strained interpretation. You may want to try your hand at redrafting the troublesome Rules and submitting a formal request for amendment. See Sections 1.401 through 1.427 regarding procedure.

Sincerely yours,

James E. Barr

These two letters brings us up to date. Now, it behooves all of us to draft a set of Rules which are not excessively lax but which are not so stringent as to restrict reason-
able and sound repeater operation. For this reason, the FM Magazine editorial staff will begin the procedure by publicizing the following recommended Rules (accompanied by explanatory comments).

Each and every interested amateur should read these recommended Rules and draft his own modifications, additions, or deletions. Send your comments to FM Editor, One Radio Ranch, San Dimas, California 91773. The incoming comments will be sorted and worked into a new draft to be published later. At the end of the process, the final draft will be submitted to the FCC as a formal petition for Rule changing.

PROPOSED RULES

The Rules have a section devoted to definitions. The first order of business would be to include an accurate definition of the term repeater. (Present Rules make no mention of repeaters.)

Definition:

Amateur Repeater: An automatic relay station which retransmits information from one amateur frequency onto another, and which is operated in accordance with the class of license held by the authorized licensee. (Unless otherwise noted, all Rules pertaining to amateur stations shall also apply to amateur repeaters.)

In order to demonstrate to the FCC a willingness on the part of repeater owners to provide communications capability without adding to the congestion, FM Magazine will propose that repeater outputs be legal only on frequencies above 51 MHz (where duplex is condoned and $A \emptyset$ emissions are permitted). Also, FM will propose that a relaxed form of "subcontrol" be authorized, so that the repeater shuts down when not being used and can be reenergized by a simple "repeater input" control scheme, such as a whistle-on decoder or the equivalent. And since the FCC
obviously will not sanction unmonitored repeaters, FM will further propose that partial control (for off commands) be designated to other amateurs than the licensee. In this way each repeater may have as many "authorized monitors" as necessary to assure continuous compliance with the Rules, while the licensee himself can be freed from the burden. A "monitor" will have the capability of commanding the system to shut down but not to turn it on again:

Means shall be provided for automatic timed shutdown of the repeater when it is not in use. A means for reactivating the repeater from the frequency of use may be included provided that such control can be overridden by a turn-off command from an authorized monitor or the licensee, and provided that such turn-off is irreversible except by direct command of (1) an authorized amateur at the repeater site or (2) remotely transmitted control signals (by wire or radio, as authorized) from the fixed control point.

In recognition of the fact that a repeater is not an ordinary amateur station, FM proposes a method for licensing all repeaters, whether controlled locally or by remote. This proposed.entry will be proposed as a change to FCC Rules, Part 97.43(d):
97.43(d)

An amateur station (including a remotely operated amateur station) may be operated as a permanent repeater provided that the FCC Form 610 is accompanied by sufficient information to show compliance with paragraph (b) (1) through (5) of this section (as applicable) and that supplementary information is submitted therewith which shows: (1) frequency and type(s) of emission to be received and retransmitted by the repeater, (2) frequency and type of emission to be employed by the transmitter, provided that no repeater shall transmit on any frequency below
51.00 MHz , (3) type of activation or method of access (continuous carrier, carrier-operated, toneactivated, etc.), (4) method for automatically shutting down the repeater when it is not in use, remotely controlled or operated from an authorized amateur station, and (5) names; addresses, and signatures of all amateurs who will accept responsibility for monitoring the repeater output, provided each has the capability of immediately suspending repeater operation should the emissions deviate from the terms and conditions of the FCC Rules and Regulations (although in no case will multiple shutdown authority be construed as a Rule which relieves the authorized licensee from this responsibility).

The existing logging requirements are truly inapplicable to repeaters, although still a requirement. FM believes the intent of the ruling can be satisfied without detailed logging of time and date of each transmission. The tentative proposal is as follows:
97. 104 Repeater log requirements.
(a) Each license of an authorized repeater stations shall be respoinsible for maintaining, at the transmitter site, an accurate log of repeater operation, which shall include the following:

1. The date and time the repeater is placed in service.
2. The date and time the repeater is shut down by the licensee or is inaccessible for any reason by the amateurs who operate on its input frequency.
3. The input power to the repeater transmitter's final amplifier. (This must be entered after each period of shutdown.
4. The frequency being repeated and the frequency of transmission. (This information
need be entered only once unless there is a change in input or output frequency.)
5. The type of emission used. (This need be entered but once unless there is a change in emission type.)
6 The method of activation; e.g., carrier-operated, toneoperated, continuous-transmit, etc. (This need be logged but once unless there is a change in activation method.) Where tone-operated, the access tone frequency must be shown in the repeater log.
(b) The repeater must at all times be monitored by an authorized amateur with the capability of suspending operation in the event the emissions are not in compliance with the Rules. (Authorized monitors are to be listed in accordance to paragraph 97.94 (d) (6). Each authorized monitor must show on his own station log the period for which he accepts repeatermonitoring responsibility. This information will consist of: (1) date and time monitoring duty is assumed, (2) name and call of previous monitor, (3) date and time at which monitoring responsibility is relinquished provided that it will only be relinquished to an authorized monitor in accordance with paragraph 97.94(d)(6), and name and call of amateur to whom monitoring authority is released. In the event that no monitor is available, the repeater shall be shut down by the last appointed monitor pursuant to the terms and conditions of 97.43(b)(4), and an entry made in that monitor's log to show date and time of shutdown. The shutdown shall be of such finality that resumption of service can be accomplished only by inperson attendance of an authorized amateur at the repeater site or, in the event of remote control, a cornmand signal from the authorized control licensee
Repeaters, like amateur stations, should be identified periodically, but
the identification need not be of the same nature as a conventional amateur station. So, to add paragraph (v) to Part 97.87, FM proposes the following modification:
(iv) Continuation from para. iv..... at least once every ten minutes during any single transmission of more than ten minutes duration, except that:
v. in the case of a repeater, the repeater may be identified automatically each time the repeater is keyed and at intervals of two minutes thereafter until cessation of transmission or each two minutes of on-the-air repeater time.

As the last entry in 97.87 (b), immediately preceding 97.87 (c), FM proposes:

Where a repeater identification is to be made automatically, such identification shall be in compliance with paragraph 97.87(a)(l)(v), and may consist of a recorded or synthetically generated sequence (voice or Morse code) containing not less than the assigned call letters of the repeater.

Well, there it is so far. Since rulemaking is a serious business and one of lasting significance, every single repeater owner should look over these proposed changes, and make deletions, additions, or corrections, as applicable. By hashing and rehashing, the FM repeater communities will come to terms with the problem of rulemaking -- and the result will be a sound and workable set of constraints that are not too binding nor too lax for effective implementation.

Send your comments to FM Rulemaking, One Radio Ranch, San Dimas (8), California 91773.
missing

some

top notch articles and great ideas

If
you
aren't

To quote one of the many reader comments so far "you obviously have embarked upon a fresh, new approach to amateur radio."
to see for yoursell, write free copy, or

> 4 months @ 2.00
> 12 months @ 5.00
> 3 years @ 10.00
to
ham radio magazine GREENVILLE, N.H. 03048
Include address, call and zip code.

it started in chocagal

by
Bill Hartis lafayette, ind

Being an avid ham and a full-fledged FM'er, naturally I can't seem to allot the time nor gather the resources to make needed repairs to the family TV set at those rare times when a breakdown occurs. In short, I'm scared to touch the thing; too complicated for my blood. So it was only natural to find yours truly, one chill, snowy evening, lugging the boob-tube across the threshold of Friendly Neighborhood TV Service, Inc.

Kicking off the overshoes and attempting to wipe the snow off my glasses with a numb index finger, I was greeted by Joe Harold, the younger partnerin Friendly, Inc. As it was after regular business hours, I surmised the old-timer had shuffled off in the direction of the barber shop a few doors down the street to talk over old times and sing a few bars of "Gay '90s" pop tunes with the tonsorial threesome at that emporium;

I heaved a sigh of relief. The OT had been a ham since before the FCC entered the embryo stage, and could talk the legs off a bowling ball. He always made it a point to ask me when I was going to graduate from a Technician class to a "real ticket." Bless his old soul, he meant well, but he always makes me a little uneasy when he brings up that subject.

Joe, on the other hand, never bothered to get any sort of amateur ticket for some reason known only to him, but he's one of the sharpest electronic men in the business. He can fix anything from a UHF garage door opener to a Viking I with equal ease, has the Photofact manuals memorized from number

3 right on up to date, and is especially proficient on sweep and sync circuits. Joe has one occasional shortcoming: He imbibes. And when he does, he gets nostalgic and talkative.

When I got there, Joe was sober, but I could tell from the bulge in his hip pocket that he wouldn't be that way long. He stayed at the shop to do his tippling in order to stay well out of sight of his XYL, and naturally he had had to wait for the OT to leave before proceeding. So I knew what was inevitable if I waited for the TV set to be repaired: one of Joe's magnanimous rehashes of his old school days. Nevertheless, I pulled up a table-model cabinet, sat down and made myself comfortable for the long wait.

THE STRAIGHT SCOOP

Joe took a surreptitious nip from the bottle, drove the last few phillips screws into the portable stereo on the bench, dropped on the test record, spun all the
knobs a time or two, pulled off the test disk and threw it back across the room to its normal resting place among a pile of old flybacks, hastily made out a ticket which he taped to the stereo, and carried it out front to the wait shelf. Carrying my set back to the shop area, he took a glance out the front window in the direction of my parked chariot. He flashed a tobacco-stained grin at me: "Whatcha got under all them antennas?"

I swear, people never get tired of asking that question. "Two-meter FM, six meter FM, Biz band and AM/FM

BC--they're all in use." I picked up a small "cassette" recorder and started playing with it. Later I was to realize what a timely act that was to be, for I taped a story that every true FM^{\prime} er should know.

I noticed that the recorder had a full cartridge, and immediately conceived the idea of recording Joe for the purpose of showing him how he sounded when he went off into one of his pickled story-telling ventures. Hastily, I switched the unit to the record mode and placed the recorder and mike carefully back down on the display case. Read Joe's story and tell me if you can find it in your heart to blame me for what I later did--I SHOPLIFTED that tape cartridge!

Embryo of an idea

"You hams and your four-wheeled attention-getters!" Joe rather cherishes anonymity. "What kind of radios you got in there, anyway?"

I tried to suppress a shudder as Joe heaved the set's back cover across the room and relegated the screws to the bench amid a half-acre of other nondescript hardware. I told him the regular dope about the Big Three--rather, the Big One and Other Two. I hadn't even got to Link and Comco when I noticed Joe chuckling under his breath. He asked me: "Have you ever heard of a 4-to-1 Vee?" Oh, yes, I assured him-THAT was one of the more popular and plentiful sets on the used FMequipment scene; how did HE know about it?

Joe took a rather immodest swig of Old Nailer and stuck a 'CG7 in the tube checker. "Well, it's like this here," he began. "I wuz goin' to residence school at DeFry up in Chocaga back in about the latter part of 148--the early part of '49 think itwas, an' Iwas workin' my way through doing odd jobs, and one'a them was tending bar in the afternoon at a li'l place called Noubie's Bar and Grill on Canyon Street, I think it was, on the West Side. I remember it was snowing just about like this one day, it was just after one o'clock, or just be-
fore-anyway, it was lunchtime or thereabouts, and we wasn't too busy. I was keepin' two guys at the bar in beer and doin' homework in between. I didn't expect a big lunch rush from the plants up the street; it seems on those bad days most of the guys' wives really went all-out, packin' up a realnice tote lunch 'cause they knew it wouldn't take much to make hubby buzz down to the corner tavern for a warmer. Seems funny, but we actually lost business on bad days. You'd think it'd be the other way around, wouldn't ya?" He threw the fresh tube at a cockroach on the far back wall and retrieved another from the shelf.
'Well, I was about ready to get a bowl of bean soup myself when a big \tan Hud son pulls up out front and two fellas jump out and stomp in the front door. Recognized 'em right off as a couple of Motoroller engineers that came in the place quite often--think their names were Hank Spaznowski and Burt Marvin, if I 'member right. "Anyway, they looked sorta downcast, like they'd lost their lastfriend or somethin', and since $I^{\prime} \mathrm{m}$ a natcheral curious sort, I took 'em their businessmen's lunch, which was merely martinis, got my bean soup an' slipped inta the booth behind 'em where I could keep an eye on things, ya know?"

Jue unscrewed the cap and dipped his beak again. "Well, it seems they had got the word. Either cook up something new and radically different in the two-way field or heads was gonna roll back at the plant. The wheels in Consumer Research said they'd been usin' the old postwar design too long already and it was time for a design change. Hank and Burt were frantic. I made up my mind from looking at the way they was pushed that I'd never be an engineer."
"Anyhow, instead of finishın' up with a ham san'wich and headin' back to the plant like they usually did, they sat there and drank purty steady all afternoon. Hank workin' his slipstick and Burt drawin' all over the tablecloth, and when it got full, he used napkins an ${ }^{1}$ even the wall. After a while they really
see how we can possibly get the thing
had a thing goin', in more ways than one!"

By this time, Joe had a "thing" going also-he had a noticeable 15 -degree list to starboard and he was dexterously, considering his ploxed condition, fishing around in the vertical integrator circuit of my set with a rather large set of dikes. I chewed a fingernail, turned my eyes from the scene, leaned back and tried to relax. In doing so, I went into a sort of dream-like state in which I was listening to Joe's description of the incident while at the same time imagining having been there myself 'way back in '49... That Joe is some storyteller
"Burt ran his fingers through his hair. 'Hank, ole buddy, say we use the same circuit that's in the Turkey Roaster, only with these new 7-and 9-pin tiny tubes. Now we know the circuit works, there's no sense going off on a tangent. Right?' Swig of martini; eat olive.
" I'll agree, but they DO wanna use that newfangled "Parmaclay" thing in the low i-f's, and somebody wants to sell us overtone crystals for the front end. Can't you imagine how often the converter output's gonna drift back an' forth across that $455 \mathrm{kc} \mathrm{i}-\mathrm{f}$? I don't
that damn stable. State of the art just hasn't got that far yet!'
"Burt beckoned for two more drinks. 'Well, we'll take care of THAT little problem; we'll just stick the slab in one of them little heaters. That'll just stabilize the hell outa it.'
"'Alrighty. How about inductors?'
"'Well, we can't use the tuned-line bit unless we bend 'em over or somethin'; I'd say let's sneak in a few cans from the Fye-Vee project ... you know, the one everybody admitted was a real flop?'
"Hank snapped his fingers and peeled out his slide rule. 'Looks sensible. Speaking of using leftover production parts, we've got a lot of those silly locknut coil forms, silver-plated huge doubler plate cans, and sorta fat round coils and shields from the car-radio division to use up. Whatsay we try to stick as much of that stuff as possible in the transmitter?'
"'Sounds like you're not aware of the new trend toward space-saving and miniaturization that's going on; Man, we gotta conserve spacell
"'Here's how we do it!' announced Hank. 'We save gobs of room by using
selenium rectifiers--you know those dry-plate thingamabobs--instead of OZ4's and the like. Also, we use an open-frame transformer instead of those ludicrous potted things they've been sending us; and to REALLY tiny it up, we wire the whole thing with about number 26 telephone wire. You know wire lasts forever in a radio--I don't foresee any possible problems from using small wire.' Then, as an afterthought, he added, 'Besides, this will give us some saving in copper.'
"Burt reached up and dropped a dime into the jikebox remote on the wall; across the room the console rattled as if in complaint. The mechanical noise ceased; the McGuire Sisters began singing. Burt gave them some assistance.
" 'And, ' Burt jabbed his finger in Hank's direction, 'don't forget we've gotta get away from having the power supply on the tranny chassis. Gee Hee has been doing that for years and it just ain't too good. THIS time, Sam, we're gonna put the receiver on one chassis, transmitter on another, and power supply on another. That should make servicing and troubleshooting 200 percent easier, in addition to making the unit more versatile.'
"Hank brightened. 'Never thoughta that! You figured out what we're goin' to do for the power supply yet?'
"'Yup! Don' wanna use a dynamotor, so--look here--I've figgered out a way to get about a dozen different voltages and biases outa one vibrator shupply. '" (There was a definite hic, but I'm not sure whether it was supposed to be Joe's or Burt's.) ' '--'course it's a little complicated, ain't it? But betcha it'll work the firsht time off; jush betcha!'
"'Shay, the Head wants us to built it into a one-piece case wit' a ree-movable lid. Tell ya what! I shaw a nifty tool box other day--plumber had it; looks like--thish--here, an' it measured 'bout 7 by 10 by 22. Think we c'n cram all that radie into it?'
"'Now there'sh an idea! You get the furlined punchbowl, ol' buddy. Now howsh about thish: Evaluation just got a couple baskets of CK5829 tubes from some surplus house other day--what shay we make it look good by usin' shome a' them, shay, in' a squelch an' clipper stages, hah?'
"Burt slapped Hank on the shoulder. !Gotta award ya the plastic deep-fat fryer fer that bit'a thinkin', Hank! An' I got one fer ya: (Another hic of questionable source.) How 'bout we put all the connectors on the front panel-includin' the meter sockets? That oughta leave ush a lot more chash---chassis room.' Hank was on his hands and knees on the floor looking for part of his slide rule. Burt yelled: 'BARTENDER, ol' buddy! How 'bout a couple more big ones, HAH?' "

Early afternoon gave way to late afternoon. Joe, homework long since forgotten, was leaning over the bar listening to the noisy discussion, mixed between being impressed and wondering whether these drunken engineers would get violent and have to be thrown out. It was obvious that they were pretty far over the hill.
"Hank was stirring his drink with the remaining part of his slide rule and muttering something barely coherent about ambient temperature. Burt stuck his fountain pen back into his shirt pocket with the cap off and announced to nobody in particular that as far as he was concerned they had come up with the design of the century. He started piling booze-stained paper napkins into his briefcase. 'Well, Hank. ole boy, thash it! We've really got something this time! They're really gonna love ush up there on Disgusted Street after tomarra mornin', shee if I ain't right. Lesh take all thish shtuff up to Clawson an' have 'im run off a couple prototypes on 1 c , an ${ }^{\text {r }}$ if there ain't room fer all of it in the case he can let Phil Wize in Portable Research shrink it up a little for ush, an' we'll nail the whole thing to the wall an' shee how it hangsh. Right, oll boddy?
"'Right, yer so RIGHT! Shay, wot're we gonna call thish new baby?'
"'Why, 4-to-1 Vee, of courshe!'
"'Why 4-to-1 Vee?'
"'Because it's V fer Vibrator powered; and 4-to-l stands fer number of parts per square inch of chassis shpace. What else COUltD it be?'
"Hank threw the remains of the slipstick across the barroom where it bounced off the jukebox. Shur can't argue wi' that, ol pall Leshgohome ! ${ }^{\text {tr }}$

LEGACY

The two disheveled men, arms around each other and singing some unidentifiable tune, staggered out into the bitter evening cold and weaved down the side walks of uptown Chocaga. The door slammed with a loud bang...

A loud bang brought me back to the present. I straightened up and looked around to the bench. My set was playing, both picture and sound normal, but Joe was not standing beside it. Joe was on the floor, passed out. I jumped up and ran over to where he lay. I felt his pulse, looked for bruises. He was out cold, smiling, mumbling to himself. Sounded like he said, "Douse the light, honey; it'll be daylight before you know it!" I placed a rolled-up shop blanket under his head and covered him with a couple of shopcoats,
I shut off the bench power, switched on the night light and headed for the front door. I could come back after the set later. As I passed the display counter, I realized the little tape recorder was still running. I turned it off and lifted the cover, Removing the tape cartridge. I replaced the tape machine in the display case. Into a coat pocket went the tape.

The barber shop was closed, the street was deserted. I tried the door lock, pulled up my coat collar and headed for the car. Sleep well, Joe Harold--you earned it. The strains of "Auld Lang

Syne" came from somewhere far down the street.

I climbed into the car and headed off toward home, smiling as I thought of those two engineers and that night so like this one, way back when in Chocaga. Reaching over to the front-mount unit, I snapped the volume control several times until the vibrator started.

K9FOV

REPEATER COORDINATION

A meeting was held in Ford, New Jersey recently to coordinate frequencies for two new metropolitan New York repeaters. Use of $146,94 \mathrm{MHz}$ in the area was discussed at length. The majority of representatives opposed repeater operation on this channel within the metropolitan area. Existing repeaters on 146.94 MHz serve areas outside the congested area or operate on a limited basis only.

Metropolitan New York has not been considered to be overly crowded on two meter FM. In order to pick new frequencies a table was drawn up showing existing use of the 146 MHz frequencies. The table was based upon information available and reflected present channel use and the approaching saturation-even on the "splits."

The following amateurs were present: WB2AKG, WA1DEL, K2EWB, WA2HXV, K2IEZ, W1JTB, KZMHP, WA2QWL, WB2RAA, WAZRHL, WA2VFB, W2WJS, K3WKV.

Gordon Pugh W2GHR

That's right, CW ELECTRONIC SALES, CO. is the exclusive distributor for the

NEW, VHF ASSOCIATES FMT-1
TWO METER FM TRANSCEIVER

Using integrated circuits in two IF stages and in the audio power amplifier the FMT-1 offers 2 watts nominal RF power output and 0.3 microvolt sensitivity for 20DB quieting.

This all solid state unit has ample power to activate even insensitive repeaters. It can operate on any of three independently selected crystal controlled receive and transmit channels. Crystals are provided for the national repeater channel $146.34-146.94$ or another set of your choice.

Available in mid-December 1968
Advance orders now being accepted

UNDER \$200.00

Complete with mobile mount and high quality ceramic mike.

The old radio corner for over a quarter century. Come in and pay us a visit or get in touch with one of our staff today.

JOHN WAOADV WILLARD WÓBQO GARY WAØKLP

ELECTRONIC SALES CO.

1237 - 16 TH ST., DENVER, COLO. 80202
303/244-5523
JOHN WøFU
MIKE WA $\sigma K X R$
JEFF KOUFA/WøLDU

CIRCLE NO. 39 ON READER SERVICE CARD

LETTERS

THE CODE

OK Ken:

I'm for your proposal about dropping the code requirements. You can count on me to help.

Keep up the good work on FM. It's great!

Dick Ulrich K6KCY
"76" Tujunga

Sir:

In regard to your article in Now FM titled "The Code: A Step Backward," I would like to say I certainly agree with you. 100%.

Everything you said in the article is just as I have felt for years.

I hold a Technician license (also a first class commercial) and the only reason I have never tried for a higher amateur grade of license is because of the code Keep up the good articles as I enjoy your magazine very much.

Gordon E. Gregory K@KWH
3808 Robert
St Lovis, Missouri 63116

Sir:

I have just read your editorial in "The Code" and I agree with you 100\%. I now hold an Advanced Class amateur license, and a first class phone license (P1-11-18193).

The code kept me off of the amateur bands' for twenty years; I am so strong against it I would feel proud to be included on the original petition to the FCC.

Leonard R. Fox WA6SXK
Maywood, Calif

Re "The Code: A Step Backward?"
Nuts. I dig the cw requirement 1 It is a useful obstacle. It keeps the "pretenders" off the hambands. If an indivioual wants a license he should work for same. Many persons (not excluding myself) can memorize study guides sufficiently to pass any exam; the code exam requires a skill, and this must be acquired. Perhaps a "practicum" exam could be used in place of the code exam --I'd buy that 1

Perhaps if Hon. Ed. were to "beat the machine," his feelings might change. Anyway, I never use the ol' code 'cept to work Novices, field day, etc.

It's a good rag--keep 'em comin'.
$73^{1} \mathrm{~s}$
W6EJK
3563 Helms Ave \#2
Culver City, Calif 90230

I support your views about ARRI, FCC, and the waste of frequencies on cw .
T. J. Barnes K9TFJ

Greenwood, Indiana

Dear Ken:
I agree 100% with your editorial on code, the ARRL establishment and its influence on our license examination structure and content.

I believe a successful attack on the Technician code requirement would be significant in that there is no international agreement entered into by our government in these frequencies. This has been the typical FCC retort to pleas for code abolishment--80 why continue in the UHF range?

I'm with you, Ken, and I hope you're able to muster the support needed.
A. R. Farrant WA8WLI

19201 Euclid Avenue, \#648
Euclid, Ohio 44117

Gentlemen:

I should like to make a few comments regarding your proposals to eliminate the code requirement for FCC license on the VHF and up amateur bands. Let me say that I was once for the idea myself. I was a Technician licenseholdex for over nine years before I got gumption enough to get my code speed up to pass the General examination. All that time, I somehow had the feeling I was being cheated because I hardly ever used cw.

As to cw being difficult to learn at the 5 wpm level, I have taught several people cw , and the longest time that it took any of them to get to 5 wpm was about 10 hours. One must practice longer than that to get a proficiency award (or license) in any other hobby I know of, As to cw being useless, has anyone tried to use modes other than cw for moonbounce? For meteor scatter communication? For "Oscar" satellite communication? For ionospheric scatter communications? For just plain old hard-to-hear fast-fading DX? Those who have will tell you that any other mode except cw almost guarantees failure to communicate. Have you ever tried to use modes other than cw for operations (such as military) where codes and ciphers were necessary? Cw is much safer, much surer, and much much easier.

Thus, it is my opinion that the almost trivial requirement for a 5 wpm code test is not a hindrance to arnateur radio above 50 MHz . Rather, it provides at least a minimum skill level necessary for an amateur operator to communicate utilizing the wide range of equipment and continuously varying propa-
gation conditions in our VHF - and -up spectrum.

Let us not take the attitude that because cw is not needed to operate in the FM mode, therefore cw is unnecessary, obsolete, and useless. Tomorrow, you or 1 may (heaven forbidl) not be interested in FM any longer, and instead we may be interested in moonbounce. Let us be prepared. Let's keep cw as a prerequisite for an Amateur license.
J. M. Mehaffey K4IHP and

W B4JBW (wife)
6835 Sunnybrook Lane, NE
Atlanta, Georgia 30328
I must as sume that your write-up about code in the November issue of FM Magazine is an editorial. It was notidentified as such and no author was listed.

1 can begin by saying that before the time Ireceived my license I would have been happy to agree with you. From the time I was in grade achool until I finished my time in the service, I wanted an Amateur license more than anything else in the world. The only bar was the 13 wpm code requirement. Fully a year before I finally got my license I held a first-class commercial telephone operator's license. The turning point came when one of my amateur friends finally put it very bluntly. In short, he said, "Al, stop fooling around; get busy and learn code."

It turned out that he was right. By the simple process of getting down to business I was able to pass the code requirement at 13 wpm after only three months. I'll admit I felt rather foolish when looking back over the many years that I had convinced myself that I simply could not do it.

Returning to some of the comments in your editorial, your third paragraph makes some statements with which I will argue. Stated more concisely, you simply say that a phone mode will handle more traffic faster. My comment here is, what do you consider traffic? If traffic is a simple statement such as "The water is rising over the bridge on South Main Street," then I will agree with you. If your traffic is in formal style, sent to a person having an odd name, contains combinations of numbers and letters such as aircraft flight numbers and arrival times, catalog numbers, unfamiliar amateur call letters, aircraft serial numbers, quantities and descriptions of emergency supplies, then I will not agree. Under these conditions the main advantage of phone is that you learn quickly how badly the message has been received. You then go back and carefully spell everything phonetically. In other words, the message is sent one character at a time.

450 SALE E•X•T•E•N•D•E•D BY DEMAAND!

The RCA CMU 15A is a $15-20 \mathrm{~W} 450 \mathrm{MHz}$ mobile unit in a 15 -inch-wide housing. Designed for trunk-mounting in 6or 12 -volt autos, the unit has a vibrator power supply and a 5894 final amplifier stage. The unit is of $1954-56$ vintage. The 5894 final is an advantage over other 450 mobiles in that power can be upped to as high as 75 W with power supply modifications.

The GE Pre-Prog is an extremely popular 450 MHz mobile comparable to the $T 44$; it features simple tuneup due to placarded test points and adjacent adjustments la VOM is an thit is needed for setup), The GEPre-Prog mannal, avail. able from GE, Box 4197, Lynchburg, Va. 24502, has all schematics, tuneup data, voltages, etc. Of $1954-57$ vintage, the Pre-Prog operates from either 6 or 12 volts, and uses cables that are interchangeable with the later Progress Line units, Recelver sensitivity is typically 0.5 uV and output power is $18-20 \mathrm{~W}$.

The T44 mobile units are all similar, the principal differences being slight modifications in receiver design. The T44A6, the earliest of those listed, is of $1954-55$ vintage. It uses two 6J4's in the receiver front end and has better selectivity than the other types. It is particularly recommended for duplex operation or for conversion to a repeater. The T44A6A is of $1956-57$ vintage; it has a "passive" front end of semiconductors (diodes) and cavities, and is highly sensitive (typically to better than 0.5 uV for 20 dB of quieting). The T44AAV is the most recent of the T44 line (195758). It has the passive front end, improved receiver multiplier design, and a physically improved transmitter final cage design. All T44 units have the same output power of 18-20W. Photos of the T44AAV appear on the cover of FM, March 1968, an issue that contains mounting suggestions and instructions for duplexing. Since there are no significant differences between models, the information applies equally to all T44's. All units operate from 6 or 12 volts.

The L44 is a desktop console base station with the same transmitter and receiver strips as the T44. The cabinet has a builtwin digital clock and (usually) a built-in metered testset. The top is easily removable and the entire console swings up for easy access to the strips for servicing. The console measures about 20 inches wide, 15 inches deep, and 10 inches high. The package is attractive enough for prominent display on any operating desk.

The Motorola 544 is the same as the 144, but in a 5-foot weatherproof (outdoor) enclosure rather than the desktop console. Front and rear doors are equipped with locks, and the cabinet has plenty of room for mounting other equipment on its internal 19 -inch rails. The J44 is extremely popular because it is easily converted to a repeater; no external power supply is necessary to operate the receiver and transmitter independently.

Mann Communications 18669 Ventura Blvd, Tarzana, Ca ${ }^{(2 n 11} \mathbf{3 4 2} 8297$

STANDARD MANN GUARANTEE APPLIES. MOBILES SOLD LESS CONTROL GROUP. CONTROL GROUPS (WHICH INCLUDE CONTROL HEAD, MIKE, SPEAKER AND CABLES) FOR ANY UNIT MAY BE PURCHASED SEPARATELY FOR \$15 EACH

MOTOROLA
 T33GGV WITH PL

95

The Motorola T33GGV is a trunk-mounting two-meter transceiver capable of running 15-20 watts into the antenna. It features the popular " G " transmitter and receiver strips and a vibrator power supply. About 10 inches wide, the T33 is small enough for mounting in virtually any trunk. It is a later vintage than the units bearing the Sensicon and Unichannel receivers.

Motorola crystal ovens, $85^{\circ} \mathrm{C}$ (GOLD): one dollar ea.
 \qquad

The D23GGV is essentially the same as the T33, but its transmitter has a slightly lower power output level and the unit is designed for dash-mounting. No control head is necessary because the volume, aqueleh, on-off switch, and speaker are built into the front of the transceiver. Greceiver, G transmitter, vibrator power supply.

Motorola D23GGV

Special Lom 186

 PriceThe next paragraph says that "if relative numerical values are assigned, cw would always come out lowest ..." This statement can be true for any mode of communication you care to name. All you need do is change the relative numerical values to suit your argument. Your next paragraph remarks that code proficiency as a license requirement hinders progress, I fail to find anywhere in your editorial where you point out just how it hindera progress. The following paragraph says that none will deny the inefficiency of cw. Here, you are wrong. Ifor one do deny this alleged inefficiency--given some conditions. I believe I am entitled tomy opinion as you are to yours. I won't comment on the ARRL and their reasons. This whole area is too filled with emotion.

I suspect that the whole reason for your having written this article begins at the bottom of the third column. You make the comment that code proficiency may not be acquired by anyone -- that some are more adept than others. Experim ence in the armed forces has shown that given enough motivation anyone can learn code. During World War II, Africans of the Belgian Congo were trained to copy code with typewriters and did so over a period of several years at radio Brazzaville. With this history I will state flatly that a code test will not discriminate against "those best suited for amateur privileges." These "best suited" persons may not want to learn code, but if they are intelligent enough to have the interest they certainly can learn it.

Toward the bottom of page 5, you say that as it happens the United States is allegedly bound by an archaic rule to an international agreement that code will be a requirement for certain high frequencies. To set the record straight, this requirement appears in the agreement of the Geneva Convention of 1959. You will fint it in Chapter X, Article 41, Paragraph 1563. This portion says that persons licensed in the amateur service will demonstrate an ability tocorrectly send and receive plain language text using international Morse code. You are right concerning frequencies above 144 MHz . No code test is required here undex international agreement.

However, perhaps you missed the most important point of all. In the United States anyone issued a license in any radio service first must demonstrate that the license will be used in the public interest, convenience or necessity. This is the old PICON concept. I will grant that persons can render immeas* urable service using VHF two-meter FM without knowing any code whatever. But, if a person is to truly be able to step in and finl any position during a communication emergency, the knowl-- edge of international code certainly will not hurt and in some cases might be an immense advantage. I can conceive of cases where code might be sent using an $\mathrm{F}-3$ rig but where signal level was too low to provide solid voice copy.

As I stated at the beginning, my first reaction to your editorial was: 80 what? I still have this feeling. If you are
looking for a controversial subject in selves. Let us not forget that this was order to generate letters to the editor, the original intent of the Technician there must be any number of truly press- class license.
ing and important issues which could be used instead. If it happens that you As my close friends will attest, I very have some friend who would like to join seldom agree with the ARRL, but on you on two-meter FM but who can't this point and this point only I agree bother to learn the code, then I have with their stand.
little sympathy for either of you. You say the FCC will listen attentively to arguments from any source. I fully agree. I have had some dealings with Also, I really enjoy FM Magazine and the FCC and above all they do appear really get much valuable info from it. to be fair-minded. It might be inter- Keep up the good work!
esting to see the outcome of any docket you care to submit.

Allen Auten W DECN
President
Denver Radio Club, Inc.
Dear Editor:
I am opposed to your editorial, "The Code: A Step Backward ?". Your article covered those operating in the VHF epectra and commented about other bands now reserved for cw.

Many people are also saying "Why have a technical exam for amateur radio?" I have taught many novices the code. Those who cannot learn "five words" do not have the mental ability to learn the technical requirements for Novice.

There is a need for code even if you don't operate cw (as in my case), RTTY is the "modern cw." Cw is justifiably required for identification of an RTTY station. Many FM and AM repeaters are station identified by cw . Cw is required in many cases under emergency conditions.

So let's not spend our time and efforts trying to take the " 5 wpm " out of the Technician test, but rather spend it in promoting FM station and repeater standardization and how to make more equipment available to the amateur at reasonable prices.

There are many active programs for those who do not want to spend the time and effort to get the Amateur license. The license costs only $\$ 8$ without the test. These programs are important, and we use them for many worthwhile causes.

Russell R. Bateman W 7NFT/WA7AKI
State Communications Officer
Emergency Operations \& Civil Defense
Salt Lake City, Utah 84108

Dear Editor:

I've been operating on two-meter FM since 1962, so I think that I can objectively comment on its various aspects.

Your November issue asked for our opinions on your FCC petition regarding code requirements on VHF. Please indicate one vote against your petition,

My reason is this: I feel that it sepa-. rates those who really are interested Since 1965 or so there has been a trend toward the people I call "pushbutton boys" who just get on and "yak" and don't even have the slightest desire to pick up a solderingiron and apply them-

PAGE 57 IS MISSING

 FROM SOURCE
PAGE 58 IS MISSING

 FROM SOURCE
CLASSIFIED ADVERTISING

Abstract

Non-commercial advertising is accepted Free of charge from individuals, provided that the copy pertains to equipment relative to FM two-way service. However, insertion is contingent upon space availability. Classified Advertising of a commercial nature is accepted at $10 ¢$ per word, including the address. Payment must accompany the Ad copy and Agency commissions do not apply. A Reader Service Card number may be used in your Ad, for an additional five dollars.

FM is not responsible for the reliability of the statements made herein.

FOR SALE

MOTOROLA Wide Band Permakey filters K8436 $\$ 4.50$ ea. $3 / \$ 10 ;$ FMTRU-5V Transceivers $\$ 25$; Hartman 120 watt Hi band Mobile Linear $\$ 85$; RCA CMV4 Hi Band, 12 volt $\$ 35$, four units $\$ 100$; Pye Hi Band Mobiles PTC 8202U $\$ 65$; Dumont 5814 \$65; Bendix Base \& Mobile., both \$85; Low Band $1 / 4 \mathrm{KW}$ Amplifier $\$ 35$; Link 1938 Remote control \$25; HIGLEY, 1196 Elberon Ave., Elberon, New Jersey 07740.

MOTOROLA HT-200, late-mod Handie-Talkie, H23DEN, on 146.940 MHz , like new, $\$ 160$. 2-freq. H23DEN, $136-151 \mathrm{MHz}$ range, w/o crystals, $\$ 190$. Both include ni-cad and work perfectly. P33BAM3101AM 5 watt, $144-174 \mathrm{MHz}$ pack set with two sets of ni-cads, NLN6029A charger, without mic or crystals, $\$ 70$. TU596TS, 12 volt, T-power strip for 60 watt (T-53, 140D), \$40. L43GGV Base, on $146-940 \mathrm{MHz}, 25$ watts, $\$ 120$. H. R. Greenlee, 430 Island Beach Blvd., Merritt Island, Florida 32952.

MOTOROLA MOTRAC, hi-band, 60 watt; $\$ 200$. Motorola Station Monitor, $30-50 \mathrm{MHz}$; $\$ 200$. HP 524 with plugins to cover $10-220 \mathrm{MHz}$, calibrated by HP on 12-1-68; $\$ 900$. GE TPL, hi-band, 15 watt; \$130. Motorola H 23 series portables, Lo-Band; \$75. GE PTL portables, hi-band; \$50. Motorola consolet base station Lo or Hi band; $\mathbf{\$ 2 5 0}$. Motorola remotes; $\$ 50$. ATV equip. (will trade for Gertch or Motorola Freq. \& Dev. Meter) Contact: H. W. Pfeiffer, 52 Scotch Pine Dr., Voorheesville, New York 12186.

MOBILE ACCESSORIES, Microphones, Communications quality (Brand Name). Carbon $\$ 6.95$ each, Miniature Control Heads $\$ 3.00,15$ Conductor 18° Cable Kits $\$ 1.25$. Power Cables $\$ 1.00$ each. For complete listings circle number 77 on Reader Service Card or write to: K-Entemprises, 763 Colfax, Elmhurst, Illinois 60126

Add to your professional knowledge with this comprehensive 92 page collection of $11^{1} 1^{\prime \prime} \times 17^{\prime \prime}$ schematic diagrams and other information specifically related to MOTOROLA COMMUNICATIONS equip. ment.
Bound in loose leaf form schernatics included cover test sets, control heads, remote control equipment, squelch relays, single-tone oscillators, decoders, 6.12 volt conversion and many more systems.
Know your Motorola equipment better. . : make repair and maintenance easier with the complete FM SCHEMATIC DIGEST

[^0]
For Sale Continued

PROGRESS LINE, 144-174 MHz transistor powered, mobile MT-36, accessories, manual, \$195. Antenna Specialists, $130-174 \mathrm{MHz}$ mobile antenna, new, never mounted, 3 db gain, $\$ 20$. Low band 8298 transmitter, \$18. Hewlett Packard 4108 VTVM, manual, $\$ 150$. RCA Low band FM CMV-3EI, 60 watt transmitter, manual, no accessories, \$40. Six meter handbook transmitter, $\$ 5$. Six meter transistorized transmitter and modulator, PC board (new) $\$ 17.4 \mathrm{CX1000A}$ ok or refund $\$ 38$. 4-125A's New, \$9. You pay shipping. Loyd Woodham, Albertville, Alabama 35950.

GE PROGRESS LINE, 100 mobile units, MZ 33 6/12 volt, 25 watts, transmitter uses dynamotor, Units complete with control head, speaker cables and microphone; $\$ 80$ each. GE Pre-Progress Line 4ES16, 25 watts, dynamotor power. Units include control head, speaker, cables and microphone; $\$ 50$ each. All of the above units sold on As Is basis. Voice Commander II with lapel speaker and charger; S65 each. GE TPL, 12 volt, 10 watt, Front mount complete with all new accessories; $\$ 165$ each. Several misc. GE components for Pre-Progress and Progress Line units. Rec., Trans., Ctl., units, cables, Xtal ovens, etc. Please send your requirements for a quotation. M. H. Klapp; W2EOV, 25 Gladwish Rd., Delmar, New York 12054.

MOTOROLA 80D transmitter strip with tone oscillator and tubes less crystal oscillator deck; clean, $\$ 10$. Pete Adely, 36 Worth Street, South Hackensack, N. J. 07024.
CRYSTAL OVENS, standard base Westinghouse, $6.3 v$, dual HC 6/v type, 75 degree, Postage paid: \$1.25 each. John Kuivinen, 126 Annapolis Drive, Claremont, California 91711.

MOTOROLA TA3GGV, with control head, mic, speaker; \$70. Motorola T44A6A; \$50. Lo Band 140D transmitter strip; \$20. Hi Band 80D transmitter strip; \$20. RCA Lo Band receiver strip narrow band; $\$ 15$. RCA 450 MHz receiver strip. wide band; $\$ 15$. Charles Copp, 6 Northfield Lane, Westbury, New York 11590.

MOTOROLA H11-1AM, handie-talkie, 39 MHz dual channel receiver, with handset and schematic, but no power supply, works okay, \$10. John Kuivinen, 126 Annapolis Drive, Claremont, California 91711.

BUDELMAN 17A, Frequency and Deviation Meter; $\$ 50$. Richard A. Des Rosiers, 540 Clay Street, Manchester, New Hampshire 03103.

PERMAKEY FILTERS, Motorola Permakey Filters \#TFN $6013 A W$ wide band for Motrac 450 MHz receivers, $\$ 4.00$ each. Art Housholder, 1774 Farwell, Des Plaines, Illinois 60018. Ph. 827-3433.

GE TPL, Receiver, complete but less case, $\$ 40$. Jones Michromatch SWR Bridge with 400 watt element \$20. Bob Koren, 107 Moorewood Avenue, Avon Lake, Ohio 44012.

BACK ISSUES of FM are available for a limited time. Specify which issues you want. Aug. ' 67 and Jan., July, Aug., Sept., Oct., Nov., and Dec. 1968. Send 40 C for each issue wanted and allow at least 4 weeks for mail delivery. Mail to FM, Back Issues, 2005 Hollywood, Grosse Pointe. Michigan 48236.

TEEDEDED	
SHPM STAMESMET	
CALIFORNIA	MISSOURI
C \& A Electronic Enterprises	Gateway Electronics Corp.
2529 E. Carson Street	249 Route 46
Long Beach	Saddie Brook
Dow Radio - Milo	NEW YORTX
17	
Pasadena	Adirondack Electronics, Inc. 2469 Albany Street
Henry Radio	Schenectady
931 E. Euclid	Merrison R
Anaheim	20 Smith Street
Henry Radio	Farmingdale, Long Island
1120 W. Olympic	
Los Angeles	Harvey Radio Co. 2 West 45th Street
Mann Communications	New York City
18669 Ventura Blvd.	
Tarzana	Stellar Industries 10 Graham Road, West
Padio Products Sales, Inc. Ithaca	
1501 S. Hill Street	
Los Angeles PENASYLVANIA	
FLORIDA	Kass Electronics Dist.
Amateur Radio Center	2502 Township Line Road Drexel Hill
2805 N. E. Second Avenue	
Miami	TEXAS
B \& C Electronics, Inc.	Electronics Center, Inc.
	2929 North Haskell
Fort Waiton Beach Dallas	
ILLINOIS	WASHINGTON
Spectronics, . Inc.	Radio Supply Co.
1009 Garfield Streat	6213 13th Avenue, South
Oak Park	Seattle
INDIANA	WISCONSIN
	Satterfield Electronics, Inc.
Graham Electronics	1900 S. Park St. , Box 1438
122 S. Senate Avenue Indianapolis	Madison
MICHIGAN	CANADA
	Ham Shack
Heathkit Electronic Center 18645 W. 8 Mile Road Detroit	1566 A. Avenue Road
	Toronto
Midway Electronic 990 W. 8 Mile Road Ferndale	Payette Radio Limited
	730 Rue St - Jacques
	Montreal
Radio Supply \& Engineering 90 Seldon Avenue Detroit	Is the Redio store you patronize listed hare?
	For counter sales information write to:
Reno Radio	FM, Counter Sales
1314 Broadway	2005 Hollywood
Detroit	Grosse Pointe, Mich. 48236

MOTOROLA

Consolette Base Station

Mod L-43GGV
30 watt
117 val
on 146.940
(or specify) w/clock and Full Metering

New Base Mike (As Shown) $\$ 25.00$

ZTY COMMUNICATIONS

P. O. BOX 147
 CORUNNA, MICHIGAN 48817

For our list of equipment on your frequency Circle Number 49 on the Reader Service Card or write today:

Commercial Quality at Amateur Prices

Circle Number 7

For Sale Continued

MOTOROLA T41G, Lo Band, 12 volt mobile, operating on $52-525 \mathrm{MHz}$. Also Motorola Hi Band Dispatcher and Portable (with transistor receiver). H. Stanley Slaten, 3535 Marvin Street, Annadale, Virginia 22003.
RINGING GENERATORS, Three 20 Hz ringing generators for telephone system, $19^{\circ}{ }^{\circ}$ panel mount, $115 v$ AC in (sub-cycle principle) $\$ 15$. each. Also all kinds of electronic equipment - some FM, RTTY and ATV - and components. Send for list available February, 1969. Circle number 78 on Reader Service Card for listing. G. M. Pugh, 89 Trumbull Road, Manhasset, New York 11030.

WANTED

MOTOROLA P-33 series handie talkie on 146-940 MHz with nicad battery, reasonable only. Pete Adely, 36 Worth Street, South Hackensack, New Jersey 07024.

BACK ISSUES of FM to buy or borrow to photo copy and I will return magazine safe and sound pronto after copying. Please! Ed Howell, P.O. Box 73, Folly Beach, South Carolina 29439.
GE PROGRESS LINE high band and 450 MHz receiver and transmitter strips. Also dual front ends, T-power supplies, 4 -frequency decks, what have you. State price with first letter. Travis R. Jarman, P.O. Box 17316, Tampa, Florida 33612.
COMMUNICATIONS TECH., FCC license is not necessary but some experience with FM communications equipment is required. Starting rates from $\$ 3.50$ to $\$ 4.50$ depending on exp. New modern facilities located in N.W. Chicago Suburb. Full line of company paid benefits. Call Mr. Holmen at (312) 894-4040 or write "Electronics" P.O. Box 572, Hoffman Estates, Illinois 60172.

HI-BAND GEAR both mobile and base. Prefer Midwest deal to reduce freight. Planning to have about 6 mobiles in N.E. Michigan by next summer. Will consider gear either "as is" or on freq. Want some two channel and some that is low power mobile local stuff . . . Write details to John Alexander, 536 Huron Hills Dr., Rte. 2, East Tawas, Michigan 48730.
HI-BAND ANTENNA for the mobile, vertical gain type. Pete Adely, 36 Worth Street, South Hackensack, New Jersey 07024.

CF-1B Carrier telephone equipment either single channel units or the whole thing. Need four to six units, or equivalent. Northeast FM Repeater Association, 18 Mary Ave., Fords, N.D. 08863.

ITT-KELLOGG HI-BAND, someone, someplace, has a warehouse full of ITT-Kellogg model K30H base and mobile sets. Units manufactured circa 196263 , never actively sold domestic market. Reward for information leading to any of these units, new or used, base or mobile, single or large lots. Bob Cooper, Jr., Island Communications Service, P.O. Box 1355, Frederiksted, ST. Croix, U.S. Virgin Islands 00840.

Wanted Continued

GE PROGRESS LINE, Lo band 50 watt base preferred but will accept mobile. Have a GE Progress Line on $146-940 \mathrm{MHz}$ to trade. Also would consider a Motorola FSTR 140BY(H). Bob Coburn, RFD2, Tinkham Lane, Londonderry, N.H. 03053.
MOTOROLA OR GE, recent Motorola or GE Progress Line, Lo band, 12 volt mobile rig. 60-100 watts. Transistorized power supply. Dan Vernier, 7626 Brentwood, Detroit, Michigan 48234.
HELP WANTED, Schematic or manual or information leading to same for: Motorola "Handy Talkie" FM Radiophone Pack, Model P111A M; transmitter strips plate 13A813618F; Serial 754; frequency 30.46 MHz ; date stamped on chassis July "55. Model No. is apparently not Motorola. Tube types 3V4, 1AH4, 1AJ5, CK5672, Etc. All correspondence will be answered. T. M. Allison, 4211 Indlan Lane, Phoenix, Arizona 85013.
TCC-3 MULTIPLEX equipment. State condition and price. G.M. Pugh, 89 Trumbull Road, Manhasset, New York 11030.
TOUCHTONE equipment, especially 16 button Touchtone dials, but other dials, decoders, etc. Needed for remote control. H. Alan Rhodes, Box 1071, Castle Pointe Station, Hoboken, N.J. 07030.

BASE STATION, hi band, 60 watt, list type, condition and price in first letter. Ed Galovic, 86 Egbert Rd., Bedford, Ohio 44146.

CANNON PLUG, 16 pin, female, No. NK-R-16-211, used on RCA carfone 150. Walter Gill, Box 725 , Roswell, N. M. 88201.

SWAP

TYPE 15 TTY unit, mod. for friction feed, Rec - 13 power supply, Reperf, table, SCI-1-60 indicator unit (solid-state). LGE box spare new parts, maint. manual. Two line feed/indicator units, 0-90 w/red lamp. Joe Feagons, Box 103, Tallula, Illinois 62688.

MISCELLANEOUS

THANKS to all who made the 4th Annual Northeast Michigan Hamfest such a whopping success. We'll see you for the 5th Annual on the first weekend of October, 1969 II Seasons Greetings from the IOSCO Amateur Radio Club.

WCRA SWAP \& SHOP. The Wheaton Community Radio Amateurs will hold the seventh annual MidWinter Swap and Shop on Sunday, February 16, 1969 at the Du Page County Fair Grounds, Wheaton, lllinois. Hours - 9:00 a.m. to 5:00 p.m. $\$ 1.00$ donation at the door. Refreshments and unlimited parking. Free coffee and doughnuts 9:0010:00 a.m. Contact Bill Lester, Box 1, Lombard, Illinois 60148, for information.

ILIANA NEI, The Illiana Two Meter AM Net will Monitor 145.620 MHz with commercial grade crystals. We will monitor 24 hrs. a day and cover Western Indiana and Eastern Illinois. We hope to expand our coverage, so come on and jump on the band wagon. The crystals for your set are easily obtained from Sentry Crystal. Contact Terry Hancock, 11-7 Ross Ade Drive, W. Lafayette, Indiana 47905 for more information.

DAYTON HAMVENTION, April 26, 1969: Sponsored by the Dayton Amateur Radio Association for the 18th year. Technical sessions, exhibits and hidden transmitter hunt. An interesting ladies' program for XYLs. For information watch ads or circle number 76 . on the Reader Service Card or write to: Dayton Hamvention, FM Activities, Box 44, Dayton, Ohio 45401.

SAROC

Sahara Amateur Radio Operators Convention

> FOURTH NATIONAL FUN CONVENTION
in HOTEL SAHARA'S new SPACE CONVENTION CENTER

EXCITING ENTERTAINMENT...
Buddy Hackett and Dean Jones in Hotel Sahara's Congo Room

LUXURIOUS ACCOMMODATIONS
1,000 beautiful rooms. Special "SAROC"
ROOM RATE OF ONLY $\$ 10$ plus room tax per night, Single or Double occupancy

"SAROC" CONVENTION SPECIAL EVENTS...

- Ladies Program in Don the Beachcomber
- Golf and Bridge Tournaments
- Breakfasts and Luncheons
- Ham Radio Awards
- Three evening Cocktail Parties hosted by HALLICRAFTERS . . . SWAN . . . GALAXY

ADVANCE REGISTRATION \$12

per person accepted until Jan. 1, 1969 regular registration at the door

INCLUDED IN REGISTRATION...

- Special "SAROC" room rate
- Buddy Hackett and Dean Jones, late show and drinks
- Admittance to Exhibit Area, Technical Seminars, Cocktail Parties
- Sunday Safari Hunt Breakfast 10 am to 2 pm

Ray E. Meyers, W6MLZ, Master of Ceremonies Edward Perkins, W7PRM, Club President L. M. Norman, W7PBV, "SAROC" Chairman

Send separate checks now for registration and accommodations to "SAROC"

HOTEL
SAHARA!
LAS VEGAS, NEVADA 89109

ANTENNAS

FOR COMMUNICATION SERVICE

VARI-LOOP 3 to 12 db gain 144 to 470 MHz

OMNI-10 10 db gain 450 to 960 MHz
 25 to 406 MHz Unity

Frequencies 25 MHz to 960 MHz ...
for
2-WAY,
FIXED ANO MOBLIE
MARINE
SATELLITE
TELEMETERING

All antennas are highly ruggedized to serve in areas of high wind and heavy ice load environment. Delivery is available on most antennas from stock. For the maximum in reliability and performance at competitive prices, write today for our new General Catalog 688, Section 4. Address Prodelin, Inc., Box 131. Hightstown, N. J. 08520.

[^0]: $\mathrm{O} \| \mathrm{PT}, \mathrm{FH}$
 1100 tREMONT STREET BOSTON, MASSACHUSEITS O2120

 TEL 427,3511

